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hSageMath, or Sage for short, is an open-source mathematical software

system based on the Python language. Sage is developed by an
international community of hundreds of teachers and researchers, whose
aim is to provide an alternative to the commercial products Magma,
Maple, Mathematica and Matlab. To reach this goal, Sage relies on
many open-source programs, including GAP, Maxima, PARI and various
scientific libraries for Python, to which thousands of new functions are
added. Sage is freely available and is supported by all modern operating
systems.
For high school students, Sage provides a wonderful scientific and
graphical calculator. It efficiently supports undergraduate students
in their computations in analysis, linear algebra, calculus, etc. For
graduate students, researchers and engineers, Sage provides the most
recent algorithms and tools for many domains of mathematics. This is
why several universities all around the world already use Sage at the
undergraduate level, including for student internships.
This book, written by researchers and teachers at different levels
(high school, undergraduate, graduate) focuses on the underlying
mathematics, which is necessary to efficiently use Sage. In such a
way, it is more a mathematical book illustrated by concrete examples
with Sage than a reference manual.
The first part of the book is accessible to high school and undergraduate
students. The content of the other parts is more suited for graduate
students, teachers and researchers.
This book is available under a Creative Commons license. It can be
freely downloaded from

http://sagebook.gforge.inria.fr/
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Preface

This book was written for those who want to efficiently use a computer algebra
system, and Sage in particular. Symbolic computation systems offer plenty of
functionality, and finding the right approach or command to solve a given problem
is sometimes difficult. A reference manual provides a detailed analytic description
of each function of the system; however, this is not very useful since usually we
do not know in advance the name of the function we are looking for! This book
provides another approach, by giving a global and synthetic point of view, while
insisting on the underlying mathematics, the classes of problems we can solve
and the corresponding algorithms.

The first part, more specific to Sage, will help getting to grips with this
system. This part is written to be understood by undergraduate students, and
partly by high school students. The other parts cover more specialised topics
encountered in undergraduate and graduate studies. Unlike in a reference manual,
the mathematical concepts are clearly explained before illustrating them with
Sage. This book is thus in the first place a book about mathematics.

To illustrate this book, Sage was a natural choice, since it is an open-source
system, that anybody can use, modify and redistribute at will. In particular
the student who learns Sage in high school will be able to continue to use it at
undergraduate or graduate levels, in a company, etc. Sage is still a relatively
young system, and despite its already extensive capacities, it does contain some
bugs. However, thanks to its very active community of developers, Sage evolves
very quickly. Every Sage user can report a bug — maybe together with its solution
— on trac.sagemath.org or via the sage-support list.

In writing this book, we have used version 8.2 of Sage. Nevertheless, the
examples should still work with later versions. However, some of the explanations
may no longer hold, for example the fact that Sage relies on Maxima for numerical
integrals.

When in December 2009 I asked Alexandre Casamayou, Guillaume Connan,
Thierry Dumont, Laurent Fousse, François Maltey, Matthias Meulien, Marc
Mezzarobba, Clément Pernet and Nicolas Thiéry to write the first version (in
French) of this book, all agreed with enthusiasm — including Nathann Cohen
who joined us later on. Given the success of the French version, it was clear
that an English version would be welcome. In March 2017, I decided to start
working on the English version; I want to thank once again those of the “dream
team” who helped me translating the text into English, updating the examples
to the new version of Sage, and moreover improving the content of the book

trac.sagemath.org
sage-support
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(Guillaume Connan, Thierry Dumont, Clément Pernet, Nicolas Thiéry), as well
as the new authors of the English version (Erik Bray, John Cremona, Marcelo
Forets, Alexandru Ghitza, Hugh Thomas).

Several people had proof-read the French version: Gaëtan Bisson, Françoise
Jung, Hugh Thomas, Anne Vaugon, Sébastien Desreux, Pierrick Gaudry, Maxime
Huet, Jean Thiéry, Muriel Shan Sei Fan, Timothy Walsh, Daniel Duparc, and
especially Kévin Rowanet and Kamel Naroun. The following people helped us to
improve the English version by proof-reading one or several chapters, or simply
reporting a typo: Fredrik Johansson, Pierre-Jean Spaenlehauer, Jacob Appelbaum,
Nick Higham, Helmut Büch, Shashank Singh, Annegret Wagler, Bruno Grenet,
Daniel S. Roche, Jeroen Demeyer, Evans Doe Ocansey, Minh Van Nguyen, Simon
Willerton, and last but not least Adil Hasan and Dimitris Papachristoudis for their
wonderful feedback. On the technical and typographic side, we thank Emmanuel
Thomé, Sylvain Chevillard, Gaëtan Bisson, Jérémie Detrey and Denis Roegel.

When writing this book, we have learned a lot about Sage, and we have of
course encountered some bugs — some of which have already been fixed. We
hope this book will be also useful to others, high school students, undergraduate
or graduate students, engineers, researchers or simply mathematical hobbyists.
Despite several proof-readings, this book is surely not perfect, and we expect the
reader to tell us about any error, typo or make any suggestion, by referring to
the page sagebook.gforge.inria.fr.

Nancy, France
May 2018 Paul Zimmermann

sagebook.gforge.inria.fr
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Part I

Getting to Grips with Sage





1
First Steps

This introductory chapter presents the way the Sage mathematical system thinks.
The next chapters of this first part develop the basic notions: how to make symbolic
or numerical computations in analysis, how to work with vectors or matrices,
write programs, deal with data lists, produce graphics, etc. The following parts
of this book treat in more detail some branches of mathematics where computers
are very helpful.

1.1 The Sage Program

1.1.1 A Tool for Mathematics
Sage is a piece of software implementing mathematical algorithms in a variety of
contexts. To start with, it can be used as a scientific pocket calculator, and can
manipulate all sorts of numbers, from integers and rational numbers to numerical
approximations of real and complex numbers with arbitrary precision, and also
including elements of finite fields.

However, mathematical computations go far beyond numbers: Sage is a
computer algebra system; it can for example help junior high school students
learn how to solve linear equations, or develop, factor, or simplify expressions; or
carry out such operations in arbitrary rings of polynomials or rational function
fields. In analysis, Sage can manipulate expressions involving square roots,
exponentials, logarithms or trigonometric functions: integration, computation
of limits, simplification of sums, series expansion, solution of certain differential
equations, and more. In linear algebra it computes with vectors, matrices, and
subspaces. It can also help illustrate and solve problems in probability, statistics,
and combinatorics.
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To summarise, Sage strives to provide a consistent and uniform access to
features in a wide area of mathematics — ranging from group theory to numerical
analysis — and beyond — visualisation in two and three dimensions, animation,
networking, databases, ... Using a single unified piece of software frees the
(budding) mathematician from having to transfer data between several tools and
learn the syntax of several programming languages.

Access to Sage

To use Sage, all that is needed is a web browser. As a starter, the ser-
vice http://sagecell.sagemath.org/ allows for testing commands. To
go further, one can use one of the online services. For example, CoCalc
(http://cocalc.com, formerly known as SageMathCloud) gives access to a
lot of computational software and collaborative tools, together with course
management features. Developed and hosted by SageMathInc, an indepen-
dent company founded by William Stein, its access is free for casual use, and
most of its code is free. Other similar services are hosted by universities and
institutions. Ask around to find out what is available near you.

For regular usage, it is recommended to use Sage on one’s own machine,
installing it if this has not yet been done by the system administrator. Sage
is available for most operating systems: Linux, Windows, MacOS; see the
Download section on http://sagemath.org.

How to start Sage depends on the environment; therefore we do not go
into details here. On CoCalc one needs to create an account, a project, and
finally a Jupyter worksheet. On a desktop, the system may provide a startup
icon. Under Linux or MacOS, one typically would launch the command sage
––notebook jupyter in a terminal.

Resources

The official Sage website offers many resources:
http://www.sagemath.org/ official site
http://doc.sagemath.org/ documentation
http://wiki.sagemath.org/quickref command lists

To get help on using Sage, the Question and Answer site http:
//ask.sagemath.org/ is very active. For technical questions (in-
stallation, troubleshooting, ...), the best medium is the mailing list
sage-support@googlegroups.com.

http://sagecell.sagemath.org/
http://cocalc.com
http://sagemath.org
http://www.sagemath.org/
http://doc.sagemath.org/
http://wiki.sagemath.org/quickref
http://ask.sagemath.org/
http://ask.sagemath.org/
mailto:sage-support@googlegroups.com


1.1. THE SAGE PROGRAM 5

User interfaces: notebooks or command line

However Sage is accessed, one can use it via a web application enabling the
edition and sharing of notebooks which mix code, interactive computations,
equations, visualisations and text:

The Help menu gives access to the documentation. We recommend
starting with the User Interface Tour, returning often to the Keyboard
Shortcuts, and progressively exploring the Thematic Tutorials.

Sage uses Jupyter as web application. Formerly known as IPython,
Jupyter allows the use of a great deal of mathematical software (GAP,
PARI/GP, or Singular, ...) and beyond (from Python to C++!), and is
supported by a large community. Notebooks are respectively in the .sws and
.ipynb format. CoCalc offers another format .sagews which is less portable,
but explores advanced interaction features.

As an alternative, one can use Sage in a terminal. Its calculator-like
command line interface gives full access to all of its capabilities, including
graphics:
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Sage and Python

Like most software for mathematical computations, Sage is used by
issuing commands written in a programming language. For this purpose,
Sage uses the general purpose programming language Python, with just a tiny
layer of syntactic sugar to support some common mathematical notations
in interactive use. For complicated or just repetitive calculations, one can
write programs instead of simple one-line commands. When mature and of
general interest, such programs can be submitted for inclusion in Sage.

Aims and history of Sage

In 2005, William Stein, an American academic, initiated the Sage project,
with the goal of producing free software for mathematical computation, devel-
oped by users for users. This meets a longstanding need of mathematicians,
and soon an international community of hundreds of developers crystallised
around Sage, most of them teachers and researchers. At first Sage had some
focus on number theory, the area of interest of its founder. As contributions
flowed in, its capabilities progressively extended to many areas of mathemat-
ics. This, together with the numerical capabilities brought in by the Scientific
Python ecosystem, has made Sage the general purpose mathematics software
that it is today.

Not only can Sage be used and downloaded for free, but it is free software:
the authors impose no restriction on its usage, redistribution, study or
modification, as long as the modifications are free themselves. In the same
spirit, the material in this book can be freely read, shared, and reused (with
proper credit, of course). This license is in harmony with the spirit of free
development and dissemination of knowledge in academia.

Sage, a software in an ecosystem

The development of Sage was relatively quick thanks to its strategy
of reusing existing free software, including many specialised mathematical
libraries or systems like GAP, PARI/GP, Maxima, Singular, to cite just a
few.

Sage itself is written in Python, a programming language used by
millions and known for the ease with which it can be learned. Python
is particularly well established in the sciences. Within the same com-
puting environment, it is possible to combine the capabilities of Sage
with scientific libraries for numerical computations, data analysis, statis-
tics, visualisation, machine learning, biology, astrophysics, and technical
libraries for networking, databases, web, ... See for example: https:
//en.wikipedia.org/wiki/List_of_Python_software.

https://en.wikipedia.org/wiki/List_of_Python_software
https://en.wikipedia.org/wiki/List_of_Python_software
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SAGE, Sage, or SageMath?

Figure 1.1 – The first occurrence of the name Sage, on a handwritten note of
W. Stein.
At first, Sage was both an acronym and a reference to the “sage” medicinal

plant. When the system later expanded to cover much of mathematics, the
acronym part was dropped. As Sage came to be known in larger circles,
and to avoid confusion with, for example, the business management software
of the same name, the official name was changed to SageMath. When the
context is unambiguous, for example in this book, it is traditional to just
use Sage.

1.2 Sage as a Calculator
1.2.1 First Computations
In the rest of the book, we present computations in the following form, which
mimics a command line Sage session:

sage: 1+1
2

The sage: text in the beginning of the first line is the command prompt of the
system. The prompt (which does not appear in the notebook interface) means
that Sage awaits a user command. The rest of the line is the command to execute,
which is validated with the 〈Enter〉 key. The lines below are the system’s answer,
which in general are the results of the computation. Some commands use several
lines (see Chapter 3). The additional command lines can then be recognised
by .... at the beginning of the line. A multi-line command should follow the
position of linebreaks and the indentation (spaces to align the line with respect
to the previous one), without copying the initial .....

In the notebook, one directly enters the commands in a computation cell, and
validates by clicking on evaluate or using the 〈Shift〉+〈Enter〉 key combination.
The combination 〈Alt〉+〈Enter〉 not only executes the command of the current
cell, but also creates a new cell just below. One can also create a new cell by
clicking in the small space just above a given cell, or below the last cell.

Sage interprets simple formulas like a scientific calculator. The operations +,
×, etc. have their usual precedence, and parentheses their common usage:
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sage: ( 1 + 2 * (3 + 5) ) * 2
34

The * character above stands for multiplication, which should not be omitted,
even in expressions like 2x. The power operation is written ˆ or **:

sage: 2^3
8
sage: 2**3
8

and the division is denoted by /:

sage: 20/6
10/3

Please note the exact computation: the result of the above division, after sim-
plification, is the rational number 10/3 and not an approximation like 3.33333.
There is no limit1 to the size of integers or rational numbers:

sage: 2^10
1024
sage: 2^100
1267650600228229401496703205376
sage: 2^1000
1071508607186267320948425049060001810561404811705533607443750\
3883703510511249361224931983788156958581275946729175531468251\
8714528569231404359845775746985748039345677748242309854210746\
0506237114187795418215304647498358194126739876755916554394607\
7062914571196477686542167660429831652624386837205668069376

To obtain a numerical approximation, one simply writes one of the numbers
with a decimal point (one could replace 20.0 by 20. or 20.000):

sage: 20.0 / 14
1.42857142857143

Besides, the numerical_approx function gives a numerical approximation of an
expression:

sage: numerical_approx(20/14)
1.42857142857143
sage: numerical_approx(2^1000)
1.07150860718627e301

Numerical approximations can be computed to arbitrarily large precisions. For
example, let us increase the precision to 60 digits to exhibit the periodicity of the
digit expansion of a rational number:

1Except that due to the available memory of the computer used.
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Basic arithmetic operations

“four operations” a+b, a-b, a*b, a/b
power a^b or a**b

square root sqrt(a)
n-th root a^(1/n)

Integer operations

integer division a // b
remainder a % b

quotient and remainder divmod(a,b)
factorial n! factorial(n)

binomial coefficient
(
n
k

)
binomial(n,k)

Usual functions on real numbers, complex numbers, ...

integer part floor(a)
absolute value, modulus abs(a)

elementary functions sin, cos, ... (see Table 2.2)

Table 1.1 – Some usual operations.

sage: numerical_approx(20/14, digits=60)
1.42857142857142857142857142857142857142857142857142857142857

Differences between exact and numerical computations are discussed in the sidebar
on page 10.

The operators // and % yield the quotient and remainder of the division of
two integers:

sage: 20 // 6
3
sage: 20 % 6
2

Several other functions apply to integers. Among those specific to integers are
the factorial and the binomial coefficients (see Table 1.1):

sage: factorial(100)
93326215443944152681699238856266700490715968264381621\
46859296389521759999322991560894146397615651828625369\
7920827223758251185210916864000000000000000000000000

Here is a way to decompose an integer into prime factors. We will return to this
problem in Chapter 5, then once more in Chapter 6.

sage: factor(2^(2^5)+1)
641 * 6700417

Fermat had conjectured that all integers 22n + 1 are prime. The above example
is the smallest counter-example.
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Computer algebra and numerical methods

A computer algebra system is a program made to manipulate, simplify
and compute mathematical formulas by applying only exact (i.e., symbolic)
transformations. The term symbolic is opposed here to numerical; it means
that computations are made using algebraic formulas, manipulating symbols
only. This is why symbolic computation is sometimes used in place of computer
algebra. In French, one says calcul formel or sometimes calcul symbolique.

In general, pocket calculators manipulate integers exactly up to twelve
digits; larger numbers are rounded, which induces errors. Thus a pocket
calculator wrongly evaluates to 0 the following expression, whereas the correct
result is 1:

(1 + 1050)− 1050.

Such errors are difficult to detect if they arise during an intermediate compu-
tation, without being anticipated by a theoretical analysis. On the contrary,
computer algebra systems do not have these limitations, and perform all
integer computations exactly: they answer 1 to the previous computation.

Numerical methods approximate to a given precision (using the trape-
zoidal rule, Simpson’s rule, Gaussian quadrature, etc.) the definite integral∫ π

0 cos tdt to obtain a numerical result near zero (with error 10−10 for exam-
ple). However, they cannot tell the user if the result is exactly 0, or on the
contrary is near zero but definitively not zero.

A computer algebra system rewrites using symbolic mathematical trans-
formations the integral

∫ π
0 cos tdt into the expression sin π − sin 0, which is

then evaluated into 0− 0 = 0. This method proves whence
∫ π

0 cos tdt = 0.
However, algebraic transformations have limits too. Most expressions

handled by symbolic computation systems are rational functions, and the ex-
pression a/a is automatically simplified into 1. This automatic simplification
is not compatible with solving equations; indeed, the solution to the equation
ax = a is x = a/a, which is simplified into x = 1 without distinguishing the
special case a = 0, for which any scalar x is solution (see also §2.1.5).

1.2.2 Elementary Functions and Usual Constants
The usual functions and constants are available (see Tables 1.1 and 1.2), as well
as for complex numbers. Here also, computations are exact:

sage: sin(pi)
0
sage: tan(pi/3)
sqrt(3)
sage: arctan(1)
1/4*pi
sage: exp(2 * I * pi)
1

even if symbolic expressions are returned instead of numerical expressions:
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Some specials values

boolean values “true” and “false” True, False
imaginary unit i I or i

infinity ∞ Infinity or oo

Common mathematical constants

Archimedes’ constant π pi
logarithm basis e = exp(1) e

Euler-Mascheroni constant γ euler_gamma
golden ratio ϕ = (1 +

√
5)/2 golden_ratio

Catalan’s constant catalan

Table 1.2 – Predefined constants.

sage: arccos(sin(pi/3))
arccos(1/2*sqrt(3))
sage: sqrt(2)
sqrt(2)
sage: exp(I*pi/7)
e^(1/7*I*pi)

One does not always get the expected results. Indeed, only few simplifications
are done automatically. If needed, it is possible to explicitly call a simplification
function:

sage: simplify(arccos(sin(pi/3)))
1/6*pi

We will see in §2.1 how to tune the simplification of expressions. Of course, it
is also possible to compute numerical approximations of the results, with an
accuracy as large as desired:

sage: numerical_approx(6*arccos(sin(pi/3)), digits=60)
3.14159265358979323846264338327950288419716939937510582097494
sage: numerical_approx(sqrt(2), digits=60)
1.41421356237309504880168872420969807856967187537694807317668

1.2.3 On-Line Help and Automatic Completion
The reference manual of each function, constant or command is accessed via the
question mark ? after its name:

sage: sin?

The documentation page contains the function description, its syntax and some
examples of usage.

The tabulation key 〈Tab〉 after the beginning of a word yields all command
names starting with these letters: thus arc followed by 〈Tab〉 prints the name of
all inverse trigonometric and hyperbolic functions:
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sage: arc<tab>
Possible completions are:
arc arccos arccosh arccot arccoth arccsc arccsch
arcsec arcsech arcsin arcsinh arctan arctan2 arctanh

1.2.4 Python Variables
To save the result of a computation, one assigns it to a variable:

sage: y = 1 + 2

to reuse it later on:

sage: y
3
sage: (2 + y) * y
15

Note that the result of a computation is not automatically printed when it is
assigned to a variable. Therefore, we will do the following to also print it,

sage: y = 1 + 2; y
3

the ’;’ character separating several instructions on the same line. Since the
computation of the result is done before the assignment, one can reuse the same
variable:

sage: y = 3 * y + 1; y
10
sage: y = 3 * y + 1; y
31
sage: y = 3 * y + 1; y
94

Additionally, Sage saves the last three results in the special variables _, __ and
___:

sage: 1 + 1
2
sage: _ + 1
3
sage: __
2

The variables we have used above are Python variables; we will discuss them
further in §3.1.3. Let us just mention that it is not recommended to redefine
predefined constants and functions from Sage. While it does not influence the
internal behaviour of Sage, it could yield surprising results:

sage: pi = -I/2
sage: exp(2*I*pi)
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e

To restore the original value, one can type for example:

sage: from sage.all import pi

or alternatively

sage: restore()

which restores to their default value all predefined variables and functions. The
reset() function performs an even more complete reset, in particular it clears all
user-defined variables.

1.2.5 Symbolic Variables
We have played so far with constant expressions like sin(

√
2), but Sage is especially

useful in dealing with expressions containing variables like x+ y + z or sin(x) +
cos(x). The “mathematician’s” symbolic variables x, y, z appearing in those
expressions differ in general from the “programmer’s” variables encountered in
the preceding section. On this point, Sage differs notably from other computer
algebra systems like Maple or Maxima.

The symbolic variables should be explicitly declared before being used2 (SR
abbreviates Symbolic Ring):

sage: z = SR.var('z')
sage: 2*z + 3
2*z + 3

In this example, the command SR.var(’z’) builds and returns a symbolic variable
whose name is z. This symbolic variable is a perfect Sage object: it is handled
exactly like more complex expressions like sin(x)+1. Then, this symbolic variable
is assigned to the “programmer’s” variable z, which enables one to use it like any
other expression, to build more complex expressions.

We could have assigned z to another variable than z:

sage: y = SR.var('z')
sage: 2*y + 3
2*z + 3

Hence, assigning the symbolic variable z to the Python variable z is just a
convention, which is however recommended to avoid confusion.

Conversely, the Python variable z does not interact with the symbolic vari-
able z:

sage: c = 2 * y + 3
sage: z = 1
sage: 2*y + 3
2*z + 3
sage: c

2Except the symbolic variable x, which is predefined in Sage.
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2*z + 3

How can we give a value to a symbolic variable appearing in an expression? One
uses the substitution operation, as in:

sage: x = SR.var('x')
sage: expr = sin(x); expr
sin(x)
sage: expr(x=1)
sin(1)

The substitution in symbolic expressions is discussed in detail in the next chapter.
Exercise 1. Explain step by step what happens during the following instructions:

sage: u = SR.var('u')
sage: u = u+1
sage: u = u+1
sage: u
u + 2

As it would become tedious to create a large number of symbolic variables,
there exists a shortcut x = SR.var(’x’, n) where n is a positive integer (notice
that indexing starts at 0):

sage: x = SR.var('x', 100)
sage: (x[0] + x[1])*x[99]
(x0 + x1)*x99

The command var(’x’) is a convenient alternative for x = SR.var(’x’)3:

sage: var('a, b, c, x, y')
(a, b, c, x, y)
sage: a * x + b * y + c
a*x + b*y + c

If the explicit declaration of symbolic variables is too cumbersome, it is also
possible to emulate the behaviour of systems like Maxima or Maple. However,
this functionality is only available in the notebook interface (but not the Jupyter
worksheet). Thus in the notebook, after:

sage: automatic_names(True)

every use of an unassigned variable yields the creation of a symbolic variable of
the same name and its assignment:

sage: 2 * bla + 3
2*bla + 3
sage: bla
bla

3In this book, we will often write x = var(’x’) instead of the better but cumbersome form
x = SR.var(’x’), to avoid the output produced by var(’x’).
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1.2.6 First Graphics
The plot command makes it easy to draw the curve of a real function on a given
interval. The plot3d command is its counterpart for three-dimensional graphics,
or for the graph of a real function of two variables. Here are examples of those
two commands:

sage: plot(sin(2*x), x, -pi, pi)
sage: plot3d(sin(pi*sqrt(x^2 + y^2))/sqrt(x^2+y^2),
....: (x,-5,5), (y,-5,5))

The graphical capacities of Sage are much wider. We will explore them in more
detail in Chapter 4.
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2
Analysis and Algebra

This chapter uses simple examples to describe the useful basic functions in analysis
and algebra. Students will be able to replace pen and paper by keyboard and screen
while keeping the same intellectual challenge of understanding mathematics.

This presentation of the main calculus commands with Sage should be ac-
cessible to young students; some parts marked with an asterisk are reserved for
higher-level students. More details are available in the other chapters.

2.1 Symbolic Expressions and Simplification
2.1.1 Symbolic Expressions
Sage allows a wide range of analytic computations on symbolic expressions
formed with numbers, symbolic variables, the four basic operations, and usual
functions like sqrt, exp, log, sin, cos, etc. A symbolic expression can be
seen as a tree like in Figure 2.1. It is important to understand that a sym-
bolic expression is a formula and not a value or a mathematical function.
Thus, Sage does not recognise the two following expressions as equal1:

sage: bool(arctan(1+abs(x)) == pi/2 - arctan(1/(1+abs(x))))
False

Thanks to the commands presented in this chapter, the user can transform
expressions into the desired form.

1The equality test == is not only a syntactic comparison: for example, the expressions
arctan(sqrt(2)) and pi/2-arctan(1/sqrt(2)) are considered equal. In fact, when one compares
two expressions with bool(x==y), Sage tries to prove that their difference is zero, and returns
True if that succeeds.
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(x + 1)*(x + 2)

Figure 2.1 – Two symbolic expressions representing the same mathematical object.

The most common operation consists of evaluating an expression by giving a
value to some of its parameters. The subs method — which can be made implicit
— performs this transformation:

sage: a, x = var('a, x'); y = cos(x+a) * (x+1); y
(x + 1)*cos(a + x)
sage: y.subs(a=-x); y.subs(x=pi/2, a=pi/3); y.subs(x=0.5, a=2.3)
x + 1
-1/4*sqrt(3)*(pi + 2)
-1.41333351100299
sage: y(a=-x); y(x=pi/2, a=pi/3); y(x=0.5, a=2.3)
x + 1
-1/4*sqrt(3)*(pi + 2)
-1.41333351100299

Compared to the usual mathematical notation x 7→ f(x), the variable which is
substituted must be explicitly given. The substitution of several parameters is
done in parallel, while successive substitutions are performed in sequence, as
shown by the two examples below:

sage: x, y, z = var('x, y, z') ; q = x*y + y*z + z*x
sage: bool(q(x=y, y=z, z=x) == q), bool(q(z=y)(y=x) == 3*x^2)
(True, True)

To replace an expression more complex than a single variable, the substitute
method is available:

sage: y, z = var('y, z'); f = x^3 + y^2 + z
sage: f.substitute(x^3 == y^2, z==1)
2*y^2 + 1

2.1.2 Transforming Expressions
The simplest non-constant expressions are polynomials and rational functions of
one or more variables. The functions allowing to rewrite expressions in several
forms or to put them in normal form are summarised in Table 2.1. For example,
the expand method is useful to expand polynomials:

sage: x, y = SR.var('x,y')
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Symbolic Functions

Sage allows also to define symbolic functions to manipulate expressions:

sage: f(x)=(2*x+1)^3 ; f(-3)
-125
sage: f.expand()
x |--> 8*x^3 + 12*x^2 + 6*x + 1

A symbolic function is just like an expression that we can call like a command
and where the order of variables is fixed. To convert a symbolic expression
into a symbolic function, we use either f(x) = ..., or the function method:

sage: y = var('y'); u = sin(x) + x*cos(y)
sage: v = u.function(x, y); v
(x, y) |--> x*cos(y) + sin(x)
sage: w(x, y) = u; w
(x, y) |--> x*cos(y) + sin(x)

Symbolic functions are useful to represent mathematical functions. They
differ from Python functions or procedures, which are programming construc-
tions described in Chapter 3. The difference between symbolic functions and
Python functions is similar to the difference between symbolic variables and
Python variables, described in §1.2.5.

A symbolic function can be used like an expression, which is not the case
for Python functions; for example, the expand method does not exist for the
latter.

sage: p = (x+y)*(x+1)^2
sage: p2 = p.expand(); p2
x^3 + x^2*y + 2*x^2 + 2*x*y + x + y

whereas the collect method groups terms together according to the powers of a
given variable:

sage: p2.collect(x)
x^3 + x^2*(y + 2) + x*(2*y + 1) + y

Those methods do not only apply to polynomials in symbolic variables, but also
to polynomials in more complex sub-expressions like sin x:

sage: ((x+y+sin(x))^2).expand().collect(sin(x))
x^2 + 2*x*y + y^2 + 2*(x + y)*sin(x) + sin(x)^2

For rational functions, the combine method enables us to group together terms
with common denominator; the partial_fraction method performs the partial
fraction decomposition over Q. (To specify a different decomposition field, we
refer the reader to §7.4.)

The more useful representations are the expanded form for a polynomial, and
the reduced form P/Q with P and Q expanded in the case of a fraction. When
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Polynomial p = zx2 + x2 − (x2 + y2)(ax− 2by) + zy2 + y2

p.expand() −ax3 + 2 bx2y − axy2 + 2 by3 + x2z + y2z + x2 + y2

p.expand().collect(x) −ax3 − axy2 + 2 by3 + (2 by + z + 1)x2 + y2z + y2

p.collect(x).collect(y) 2 bx2y + 2 by3 − (ax− z − 1)x2 − (ax− z − 1)y2

p.factor() −(ax− 2 by − z − 1)
(
x2 + y2

)
p.factor_list()

[
(ax− 2 by − z − 1, 1) ,

(
x2 + y2, 1

)
, (−1, 1)

]
Fraction r = x3+x2y+3 x2+3 xy+2 x+2 y

x3+2 x2+xy+2 y

r.simplify_rational() x2+(x+1)y+x
x2+y

r.factor() (x+y)(x+1)
x2+y

r.factor().expand() x2

x2+y + xy
x2+y + x

x2+y + y
x2+y

Fraction r = (x−1)x
x2−7 + y2

x2−7 + b
a

+ c
a

+ 1
x+1

r.combine() (x−1)x+y2

x2−7 + b+c
a

+ 1
x+1

Fraction r = 1
(x3+1)y2

r.partial_fraction(x) −(x−2)
3 (x2−x+1)y2 + 1

3 (x+1)y2

Table 2.1 – Polynomials and fractions.

two polynomials or fractions are written in this form, it suffices to compare their
coefficients to decide if they are equal: we say they are in normal form.

2.1.3 Usual Mathematical Functions
Most mathematical functions are known to Sage, in particular the trigonometric
functions, the logarithm and the exponential: they are summarised in Table 2.2.

Knowing how to transform such functions is crucial. To simplify an expression
or a symbolic function, the simplify method is available:

sage: (x^x/x).simplify()
x^(x - 1)

However, for more subtle simplifications, the desired kind of simplification
should be explicit:

sage: f = (e^x-1) / (1+e^(x/2)); f.canonicalize_radical()
e^(1/2*x) - 1

For example, to simplify trigonometric expressions, the simplify_trig method
should be used:

sage: f = cos(x)^6 + sin(x)^6 + 3 * sin(x)^2 * cos(x)^2
sage: f.simplify_trig()
1
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Usual mathematical functions

Exponential and logarithm exp, log
Logarithm in base a log(x, a)

Trigonometric functions sin, cos, tan
Inverse trigonometric functions arcsin, arccos, arctan

Hyperbolic functions sinh, cosh, tanh
Inverse hyperbolic functions arcsinh, arccosh, arctanh

Integer part, etc. floor, ceil, trunc, round
Square and n-th root sqrt, nth_root

Rewriting trigonometric expressions

Simplification simplify_trig
Linearisation reduce_trig

Anti-linearisation expand_trig

Table 2.2 – Usual functions and simplification.

To linearise (resp. anti-linearise) a trigonometric expression, we use reduce_trig
(resp. expand_trig):

sage: f = cos(x)^6; f.reduce_trig()
1/32*cos(6*x) + 3/16*cos(4*x) + 15/32*cos(2*x) + 5/16
sage: f = sin(5 * x); f.expand_trig()
5*cos(x)^4*sin(x) - 10*cos(x)^2*sin(x)^3 + sin(x)^5

Expressions containing factorials can also be simplified:
sage: n = var('n'); f = factorial(n+1)/factorial(n)
sage: f.simplify_factorial()
n + 1

The simplify_rational method tries to simplify a fraction; whereas to simplify
square roots, logarithms or exponentials, the canonicalize_radical method is
recommended:

sage: f = sqrt(abs(x)^2); f.canonicalize_radical()
abs(x)
sage: f = log(x*y); f.canonicalize_radical()
log(x) + log(y)

The simplify_full command applies the methods simplify_factorial, simplify_
rectform, simplify_trig, simplify_rational and expand_sum (in that order).

All that is needed to determine the variation of a function (derivatives, asymp-
totes, extrema, localisation of zeroes and graph drawing) can be easily obtained
using a computer algebra system. The main Sage operations applying to functions
are presented in §2.3.

2.1.4 Assumptions
During a computation, the symbolic variables appearing in expressions are in
general considered as taking potentially any value in the complex plane. This
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might be a problem when a parameter represents a quantity in a restricted domain
(for example, a positive real number).

A typical case is the simplification of the expression
√
x2. The proper way

consists of using the assume function, which enables us to define the properties
of a variable, which can in turn be reverted by the forget instruction:

sage: assume(x > 0); bool(sqrt(x^2) == x)
True
sage: forget(x > 0); bool(sqrt(x^2) == x)
False
sage: n = var('n'); assume(n, 'integer'); sin(n*pi)
0

2.1.5 Some Pitfalls

The Simplification Problem

The examples of §2.1.5 demonstrate how important normal forms are,
and in particular the test of zero.

Some families of expressions, like polynomials, have a decision procedure
for the equality to zero. As a consequence, for those families, a program is
able to decide whether a given expression is zero or not. In most cases, this
test is done via the reduction to the normal form: the expression is zero if
and only if its normal form is 0.

Unfortunately, not all classes of expressions have a normal form, moreover
for some classes it is possible to show that no general method is able to decide
in a finite amount of time whether an expression is zero. An example of such
a class is made of the rational numbers, the constants π, log 2 and a variable,
together with additions, subtractions, multiplications, exponentials and the
sine function. The repeated use of numerical_approx, while increasing
the precision, succeeds in most cases to conjecture if a given expression is
zero or not; however, it has been proven impossible to write a computer
program taking as input an expression of this class, and returning true if
this expression is zero, and false otherwise.

The simplification problem is much harder in those classes. Without any
normal form, computer algebra systems can only provide some rewriting
functions that the user must play with to obtain some result. Some hope is
however possible, if we can identify sub-classes of expressions which have a
normal form, and if we know which methods should be applied to compute
those normal forms. The Sage approach to handle those issues is presented
in more details in Chapter 5.

Let c be a slightly complex expression:

sage: a = var('a')
sage: c = (a+1)^2 - (a^2+2*a+1)
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where we want to solve the equation cx = 0 in the variable x:
sage: eq = c * x == 0

One might be tempted to divide out this equation by c before solving it:
sage: eq2 = eq / c; eq2
x == 0
sage: solve(eq2, x)
[x == 0]

Fortunately, Sage avoids this mistake:
sage: solve(eq, x)
[x == x]

Sage was able to correctly solve the equation because the coefficient c is a
polynomial expression. It is thus easy to check whether c is zero, by expanding
it:

sage: expand(c)
0

and use the fact that two mathematically identical polynomials share the same
expanded form, or said otherwise, that the expanded form is a normal form for
polynomials.

However, on a slightly more complex example, Sage does not avoid the pitfall:
sage: c = cos(a)^2 + sin(a)^2 - 1
sage: eq = c*x == 0
sage: solve(eq, x)
[x == 0]

even if Sage is able to correctly simplify and test to zero this expression:
sage: c.simplify_trig()
0
sage: c.is_zero()
True

2.2 Equations
We now deal with equations and how to solve them; the main functions are
summarised in Table 2.3.

2.2.1 Explicit Solving
Let us consider the following equation, with unknown z and parameter ϕ:

z2 − 2
cosϕz + 5

cos2 ϕ
− 4 = 0, with ϕ ∈

]
−π2 ,

π

2

[
.

It is written in Sage:
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Scalar equations

Symbolic solution solve
Roots (with multiplicities) roots

Numerical solving find_root

Vector and functional equations

Solving linear equations solve_right, solve_left
Solving differential equations desolve

Solving recurrences rsolve

Table 2.3 – Solving equations.

sage: z, phi = var('z, phi')
sage: eq = z**2 - 2/cos(phi)*z + 5/cos(phi)**2 - 4 == 0; eq
z^2 - 2*z/cos(phi) + 5/cos(phi)^2 - 4 == 0

We can extract the left-hand (resp. right-hand) side with the lhs (resp. rhs)
method:

sage: eq.lhs()
z2 − 2 z

cos(ϕ) + 5
cos(ϕ)2 − 4

sage: eq.rhs()
0
then solve it for z with solve:

sage: solve(eq, z)[
z = − 2

√
cos(ϕ)2−1−1

cos(ϕ) , z = 2
√

cos(ϕ)2−1+1
cos(ϕ)

]
Let us now solve the equation y7 = y.

sage: y = var('y'); solve(y^7==y, y)
[y == 1/2*I*sqrt(3) + 1/2, y == 1/2*I*sqrt(3) - 1/2, y == -1,
y == -1/2*I*sqrt(3) - 1/2, y == -1/2*I*sqrt(3) + 1/2, y == 1, y == 0]

The roots of the equation can be returned as an object of type dictionary (cf.
§3.3.9):

sage: solve(x^2-1, x, solution_dict=True)
[{x: -1}, {x: 1}]

The solve command can also solve systems of equations:
sage: solve([x+y == 3, 2*x+2*y == 6], x, y)
[[x == -r1 + 3, y == r1]]

This linear system being underdetermined, the variable allowing to parametrise
the set of solutions is a real number named r1, r2, etc. If this parameter is known
to be an integer, it is named z1, z2, etc. (below, z... stands for z36, z60, or
similar, according to the Sage version):
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sage: solve([cos(x)*sin(x) == 1/2, x+y == 0], x, y)
[[x == 1/4*pi + pi*z..., y == -1/4*pi - pi*z...]]

The solve command can also solve inequalities:

sage: solve(x^2+x-1 > 0, x)
[[x < -1/2*sqrt(5) - 1/2], [x > 1/2*sqrt(5) - 1/2]]

Sometimes, solve returns the solutions of a system as floating-point numbers.
For example, let us solve in C3 the following system: x2yz = 18,

xy3z = 24,
xyz4 = 6.

sage: x, y, z = var('x, y, z')
sage: solve([x^2 * y * z == 18, x * y^3 * z == 24,\
....: x * y * z^4 == 6], x, y, z)
[[x == 3, y == 2, z == 1],
[x == (1.337215067329613 - 2.685489874065195*I),
y == (-1.700434271459228 + 1.052864325754712*I),
z == (0.9324722294043555 - 0.3612416661871523*I)], ...]

Sage returns here 17 tuples, among which 16 are approximate complex solutions.
To obtain a fully symbolic solution, we refer to Chapter 9.

To solve equations numerically, the find_root function takes as input a
function of one variable or a symbolic equality, and the bounds of the interval in
which to search. Sage does not find any symbolic solution to this equation:

sage: expr = sin(x) + sin(2 * x) + sin(3 * x)
sage: solve(expr, x)
[sin(3*x) == -sin(2*x) - sin(x)]

Two choices are then possible: either a numerical solution,

sage: find_root(expr, 0.1, pi)
2.0943951023931957

or first rewrite the expression:

sage: f = expr.simplify_trig(); f
2*(2*cos(x)^2 + cos(x))*sin(x)
sage: solve(f, x)
[x == 0, x == 2/3*pi, x == 1/2*pi]

Last but not least, the roots function gives the roots of an equation with
their multiplicity. The ring in which solutions are looked for can be given; with
RR≈ R or CC≈ C, we obtain floating-point roots. The solving method is specific
to the given equation, contrary to find_roots which uses a generic method.

Let us consider the degree-3 equation x3 + 2x+ 1 = 0. This equation has a
negative discriminant, thus it has a real root and two complex roots, which are
given by the roots method:

sage: (x^3+2*x+1).roots(x)
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sage: (x^3+2*x+1).roots(x, ring=RR)

[(−0.453397651516404, 1)]

sage: (x^3+2*x+1).roots(x, ring=CC)[
(−0.453397651516404, 1), (0.226698825758202− 1.46771150871022 ∗ I, 1),
(0.226698825758202 + 1.46771150871022 ∗ I, 1)

]

2.2.2 Equations with no Explicit Solution

In most cases, as soon as the equation or system becomes too complex, no explicit
solution can be found:

sage: solve(x^(1/x)==(1/x)^x, x)
[(1/x)^x == x^(1/x)]

However, this is not necessarily a limitation! Indeed, a specificity of computer
algebra is the ability to manipulate objects defined by equations, and in particular
to compute their properties, without solving them explicitly. Even better: in
some cases, the equation defining a mathematical object is the best algorithmic
representation for it.

For example, a function given by a linear differential equation and initial
conditions is perfectly defined. The set of solutions of linear differential equations
is closed under sum and product (among other operations), and thus forms an
important class where equality to zero can be decided. However, if we explicitly
solve such an equation, the obtained solution might be part of a much larger class
where very few questions are decidable.

sage: y = function('y')(x)
sage: desolve(diff(y,x,x) + x*diff(y,x) + y == 0, y, [0,0,1])
-1/2*I*sqrt(2)*sqrt(pi)*erf(1/2*I*sqrt(2)*x)*e^(-1/2*x^2)

We will go back to this in more detail in Chapter 14 and in §15.1.2.
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2.3 Analysis
This section is a quick introduction of useful functions in real analysis. For more
advanced usage or more details, we refer to the following chapters, in particular
about numerical integration (Chapter 14), non-linear equations (Chapter 12), and
differential equations (Chapter 10).

2.3.1 Sums
The sum function computes symbolic sums. Let us obtain for example the sum of
the n first positive integers:

sage: k, n = var('k, n')
sage: sum(k, k, 1, n).factor()
1
2 (n+ 1)n

The sum function allows simplifications of a binomial expansion:

sage: n, k, y = var('n, k, y')
sage: sum(binomial(n,k) * x^k * y^(n-k), k, 0, n)
(x+ y)n

Here are more examples, among them the sum of the cardinalities of all parts of
a set of n elements:

sage: k, n = var('k, n')
sage: sum(binomial(n,k), k, 0, n),\
....: sum(k * binomial(n, k), k, 0, n),\
....: sum((-1)^k*binomial(n,k), k, 0, n)(
2n, 2n−1n, 0

)
Finally, some examples of geometric sums:

sage: a, q, k, n = var('a, q, k, n')
sage: sum(a*q^k, k, 0, n)
aqn+1−a
q−1

To compute the corresponding power series, we should tell Sage that the
modulus2 of q is less than 1:

sage: assume(abs(q) < 1)
sage: sum(a*q^k, k, 0, infinity)
− a
q−1

sage: forget(); assume(q > 1); sum(a*q^k, k, 0, infinity)
Traceback (most recent call last):
...
ValueError: Sum is divergent.
2Remember that by default, symbolic variables represent complex values.
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Exercise 2 (Computing a sum by recurrence). Compute, without using the sum
command, the sum of p-powers of integers from 0 to n, for p = 1, ..., 4:

Sn(p) =
n∑
k=0

kp.

The following recurrence can be useful to compute this sum:

Sn(p) = 1
p+ 1

(
(n+ 1)p+1 −

p−1∑
j=0

(
p+ 1
j

)
Sn(j)

)
.

This recurrence is easily obtained when computing by two different methods the telescopic
sum

∑
0≤k≤n

(k + 1)p+1 − kp+1.

2.3.2 Limits
To determine a limit, we use the limit command or its alias lim. Let us compute
the following limits:

a) lim
x→8

3
√
x− 2

3
√
x+ 19− 3

;

b) lim
x→π

4

cos
(
π
4 − x

)
− tan x

1− sin
(
π
4 + x

) .

sage: limit((x**(1/3) - 2) / ((x + 19)**(1/3) - 3), x = 8)
9/4
sage: f(x) = (cos(pi/4-x)-tan(x))/(1-sin(pi/4 + x))
sage: limit(f(x), x = pi/4)
Infinity

The last output says that one of the limits to the left or to the right is infinite.
To know more about this, we study the limits to the left (minus) and to the right
(plus), with the dir option:

sage: limit(f(x), x = pi/4, dir='minus')
+Infinity
sage: limit(f(x), x = pi/4, dir='plus')
-Infinity

2.3.3 Sequences
The above functions enable us to study sequences of numbers. We illustrate this
by comparing the growth of an exponential sequence and a geometric sequence.

Example. (A sequence study) Let us consider the sequence un = n100

100n .
Compute the first 10 terms. How does the sequence vary? What is the sequence
limit? From which value of n does un ∈

]
0, 10−8[ hold?
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1. To define the term of order n, we use a symbolic function. We then compute
the first 10 terms by hand (loops will be introduced in Chapter 3):

sage: u(n) = n^100 / 100^n
sage: u(1.);u(2.);u(3.);u(4.);u(5.);u(6.);u(7.);u(8.);u(9.);u(10.)
0.0100000000000000
1.26765060022823e26
5.15377520732011e41
1.60693804425899e52
7.88860905221012e59
6.53318623500071e65
3.23447650962476e70
2.03703597633449e74
2.65613988875875e77
1.00000000000000e80

We could quickly conclude that un tends to infinity...

2. To get an idea of the variation of the sequence, we can draw the graph of
the function n→ un (cf. Figure 2.2).

sage: plot(u(x), x, 1, 40)
Graphics object consisting of 1 graphics primitive

5 10 15 20 25 30 35 40
0

2e89

4e89

6e89

8e89

1e90

1.2e90

1.4e90

1.6e90

Figure 2.2 – Graph of x 7→ x100/100x.

We then conjecture that the sequence decreases from index 22 onwards.
sage: v(x) = diff(u(x), x); sol = solve(v(x) == 0, x); sol
[x == 50/log(10), x == 0]
sage: floor(sol[0].rhs())
21

The sequence is thus increasing up to index 21, then decreasing after index
22.
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Functions and operators

Derivative diff(f(x), x)
n-th derivative diff(f(x), x, n)
Antiderivative integrate(f(x), x)

Numerical integration integral_numerical(f(x), a, b)
Symbolic summation sum(f(i), i, imin, imax)

Limit limit(f(x), x=a)
Taylor expansion taylor(f(x), x, a, n)

Power series expansion f.series(x==a, n)
Graph of a function plot(f(x), x, a, b)

Table 2.4 – Useful functions in analysis.

3. We then compute the limit:

sage: limit(u(n), n=infinity)
0
sage: n0 = find_root(u(n) - 1e-8 == 0, 22, 1000); n0
105.07496210187252

Since the sequence decreases from index 22 onwards, we deduce that starting
from index 106, the sequence always lies in the interval

]
0, 10−8[.

2.3.4 Power Series Expansions (*)
To compute a power series expansion of order n at x0, the command to use is
f(x).series(x==x0, n).

Let us determine the power series expansion of the following functions:

a) (1 + arctan x) 1
x of order 3, at x0 = 0;

b) ln(2 sin x) of order 3, at x0 = π
6 .

sage: ((1+arctan(x))^(1/x)).series(x==0, 3)
(e) + (− 1

2 e)x+ ( 1
8 e)x2 +O

(
x3)

sage: (ln(2*sin(x))).series(x==pi/6, 3)

(
√

3)(− 1
6 π + x) + (−2)(− 1

6 π + x)2 +O
(
− 1

216 (π − 6x)3
)

To extract the regular part of a power series expansion obtained by series,
we call the truncate method:

sage: (ln(2*sin(x))).series(x==pi/6, 3).truncate()
− 1

18 (π − 6x)2 − 1
6
√

3(π − 6x)

The taylor command provides asymptotic expansions too. For example, let
us see how the function (x3 + x) 1

3 − (x3 − x) 1
3 behaves around +∞:
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sage: taylor((x**3+x)**(1/3) - (x**3-x)**(1/3), x, infinity, 2)
2/3/x

Exercise 3 (Computing a symbolic limit). Let f be C3 around a ∈ R. Compute

lim
h→0

1
h3 (f(a+ 3h)− 3f(a+ 2h) + 3f(a+ h)− f(a)) .

Generalisation?
Example. (Machin’s formula) Prove the following formula:

π

4 = 4 arctan 1
5 − arctan 1

239 .

The astronomer John Machin (1680-1752) used this formula and the series expan-
sion of arctan to compute 100 decimal digits of π in 1706.

We first notice that 4 arctan 1
5 and π

4 + arctan 1
239 admit the same tangent:

sage: tan(4*arctan(1/5)).simplify_trig()
120/119
sage: tan(pi/4+arctan(1/239)).simplify_trig()
120/119

Since the real numbers 4 arctan 1
5 and π

4 + arctan 1
239 are both in the open

interval ]0, π[, they are equal. To obtain an approximation of π, we thus proceed
as follows:

sage: f = arctan(x).series(x, 10); f
1*x + (-1/3)*x^3 + 1/5*x^5 + (-1/7)*x^7 + 1/9*x^9 + Order(x^10)
sage: (16*f.subs(x==1/5) - 4*f.subs(x==1/239)).n(); pi.n()
3.14159268240440
3.14159265358979

Exercise 4 (A formula due to Gauss). The following formula required 20 pages of fac-
torisation tables in the edition of Gauss’ works (cf. Werke, ed. Königl. Ges. d. Wiss. Göt-
tingen, vol. 2, p. 477-502):

π

4 = 12 arctan 1
38 + 20 arctan 1

57 + 7 arctan 1
239 + 24 arctan 1

268 .

1. Define θ = 12 arctan 1
38 + 20 arctan 1

57 + 7 arctan 1
239 + 24 arctan 1

268 .
Verify with Sage that tan θ = 1.

2. Justify the inequality: ∀x ≥ 0, arctan x ≤ x. Deduce Gauss’ formula.
3. Approximate the arctan function by its Taylor expansion of order 21 at 0, and

deduce a new approximation of π.

2.3.5 Series (*)
The commands introduced earlier can be used to perform computations on series.
Let us give some examples.

Example. (Evaluation of the Riemann zeta function)
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sage: k = var('k')
sage: sum(1/k^2, k, 1, infinity),\
....: sum(1/k^4, k, 1, infinity),\
....: sum(1/k^5, k, 1, infinity)( 1

6 π
2, 1

90 π
4, ζ(5)

)
Example. (A formula due to Ramanujan) Using the first 12 terms of the

following series, we give an approximation of π and we compare it with the value
given by Sage.

1
π

= 2
√

2
9801

+∞∑
k=0

(4k)! · (1103 + 26390 k)
(k!)4 · 3964k .

sage: s = 2*sqrt(2)/9801*(sum((factorial(4*k)) * (1103+26390*k) /
....: ((factorial(k)) ^ 4 * 396 ^ (4 * k)) for k in (0..11)))
sage: (1/s).n(digits=100)
3.141592653589793238462643383279502884197169399375105820974...
sage: (pi-1/s).n(digits=100).n()
-4.36415445739398e-96

We notice that the partial sum of the first 12 terms already yields 95 significant
digits of π!

Example. (Convergence of a series) Let us study the convergence of the
series ∑

n≥0
sin
(
π
√

4n2 + 1
)
.

To get an asymptotic expansion of the general term, we use the 2π-periodicity of
the sine function, so that the sine argument tends to 0:

un = sin
(
π
√

4n2 + 1
)

= sin
[
π
(√

4n2 + 1− 2n
)]
.

We can then apply the taylor function to this new expression of the general
term:

sage: n = var('n'); u = sin(pi*(sqrt(4*n^2+1)-2*n))
sage: taylor(u, n, infinity, 3)
π

4n −
6π+π3

384n3

We deduce un ∼ π
4n . Therefore, by comparison with the series defining the

Riemann zeta function, the series
∑
n≥0

un diverges.

Exercise 5 (Asymptotic expansion of a sequence). It is easy to show (for example,
using a bijection) that for all n ∈ N, the equation tan x = x has exactly one solution xn
in the interval [nπ, nπ + π

2 [. Give an asymptotic expansion of xn to order 6 in +∞.
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2.3.6 Derivatives
The derivative function (with alias diff) computes the derivative of a symbolic
expression or function.

sage: diff(sin(x^2), x)
2*x*cos(x^2)
sage: function('f')(x); function('g')(x); diff(f(g(x)), x)
f(x)
g(x)
D[0](f)(g(x))*diff(g(x), x)
sage: diff(ln(f(x)), x)
diff(f(x), x)/f(x)

2.3.7 Partial Derivatives (*)
The derivative (or diff) command also computes iterated or partial deriva-
tives.

sage: f(x,y) = x*y + sin(x^2) + e^(-x); derivative(f, x)
(x, y) |--> 2*x*cos(x^2) + y - e^(-x)
sage: derivative(f, y)
(x, y) |--> x

Example. Let us check that the following function is harmonic3:
f(x, y) = 1

2 ln(x2 + y2) for all (x, y) 6= (0, 0).

sage: x, y = var('x, y'); f = ln(x**2+y**2) / 2
sage: delta = diff(f,x,2) + diff(f,y,2)
sage: delta.simplify_rational()
0

Exercise 6 (A counter-example due to Peano to Schwarz’ theorem). Let f be the
function from R2 to R defined by:

f(x, y) =

{
xy x

2−y2

x2+y2 if (x, y) 6= (0, 0),
0 if (x, y) = (0, 0).

Does ∂1∂2f(0, 0) = ∂2∂1f(0, 0) hold?

2.3.8 Integrals
To compute an indefinite or definite integral, we use integrate as a function or
method (or its alias integral):

sage: sin(x).integral(x, 0, pi/2)
1
sage: integrate(1/(1+x^2), x)
arctan(x)

3A function f is said harmonic when its Laplacian ∆f = ∂2
1f + ∂2

2f is zero.
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sage: integrate(1/(1+x^2), x, -infinity, infinity)
pi
sage: integrate(exp(-x**2), x, 0, infinity)
1/2*sqrt(pi)

sage: integrate(exp(-x), x, -infinity, infinity)
Traceback (most recent call last):
...
ValueError: Integral is divergent.

Example. Let us compute, for x ∈ R, the integral ϕ(x) =
∫ +∞

0

x cosu
u2 + x2 du.

sage: u = var('u'); f = x * cos(u) / (u^2 + x^2)
sage: assume(x>0); f.integrate(u, 0, infinity)
1/2*pi*e^(-x)
sage: forget(); assume(x<0); f.integrate(u, 0, infinity)
-1/2*pi*e^x

We thus have: ∀x ∈ R∗, ϕ(x) = π
2 · sgn(x) · e−|x|.

To compute numerically an integral on an interval, we have at our disposal
the integral_numerical function, which returns a pair, whose first value is
the approximation of the integral, while the second value is an estimate of the
corresponding error.

sage: integral_numerical(sin(x)/x, 0, 1)
(0.946083070367183, 1.0503632079297087e-14)
sage: g = integrate(exp(-x**2), x, 0, infinity)
sage: g, g.n()
(1/2*sqrt(pi), 0.886226925452758)
sage: approx = integral_numerical(exp(-x**2), 0, infinity)
sage: approx
(0.8862269254527568, 1.714774436012769e-08)
sage: approx[0]-g.n()
-1.11022302462516e-15

Exercise 7 (The BBP formula (*)). Let us establish by a symbolic computation
the BBP formula (or Bailey-Borwein-Plouffe formula); this formula directly gives the
n-th digit of π in radix 2 (or 16) without computing the previous digits, and with very
little memory usage and time. For N ∈ N, let us define

SN =
N∑
n=0

( 4
8n+ 1 −

2
8n+ 4 −

1
8n+ 5 −

1
8n+ 6

)( 1
16

)n
.

1. Consider the function f : t 7−→ 4
√

2− 8t3 − 4
√

2t4 − 8t5. For N ∈ N, express the
following integral as a function of SN :

IN =
∫ 1/

√
2

0
f(t)

(
N∑
n=0

t8n

)
dt.
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Usual functions on vectors

Vector construction vector
Cross product cross_product
Scalar product dot_product

Norm of a vector norm

Table 2.5 – Vector computations.

2. For N ∈ N, let us define J =
∫ 1/

√
2

0

f(t)
1− t8 dt. Prove lim

N→+∞
SN = J .

3. Prove the BBP formula:
+∞∑
n=0

( 4
8n+ 1 −

2
8n+ 4 −

1
8n+ 5 −

1
8n+ 6

)( 1
16

)n
= π.

This fabulous formula was found on September 19, 1995 by Simon Plouffe, in
collaboration with David Bailey and Peter Borwein. Thanks to computation
derived from the BBP formula, the 4 000 000 000 000 000-th digit of π in radix 2
was computed in 2001.

2.4 Basic Linear Algebra (*)
In this section, we describe the basic useful functions in linear algebra: first
operations on vectors, then on matrices. For more details, we refer the reader
to Chapter 8 for symbolic linear algebra, and to Chapter 13 for numerical linear
algebra.

2.4.1 Solving Linear Systems
To solve a linear system, we can use the solve function, already seen above.

Exercise 8 (Polynomial approximation of the sine function). Determine the poly-
nomial of degree at most 5 which approximates best, in the least squares sense, the sine
function on the interval [−π, π]:

α5 = min
{∫ π

−π
|sin x− P (x)|2 dx

∣∣∣ P ∈ R5[x]
}
.

2.4.2 Vector Computations
The basic functions for manipulating vectors are summarised in Table 2.5.

We can use those functions to deal with the following exercise.
Exercise 9 (Gauss’ problem). Consider a satellite in orbit around the Earth, and

assume we know three points of its orbit: A1, A2 and A3. Determine from these three
points the orbit parameters of this satellite.

Let us denote O the centre of the Earth. The points O, A1, A2 and A3 are clearly
in the same plane, namely the plane defined by the satellite orbit. The satellite orbit is
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an ellipse of which O is a focal point. We can choose as coordinate system (O;−→ı ,−→ )
in such a way that the ellipse equation in polar coordinates is r = p

1−e cos θ where e is
the ellipse eccentricity, and p its parameter. We will note −→ri = −−→OAi and ri = ‖−→ri ‖ for
i ∈ {1, 2, 3}. We then consider the three following vectors deduced from A1, A2 and A3:

−→
D = −→r1 ∧ −→r2 +−→r2 ∧ −→r3 +−→r3 ∧ −→r1 ,
−→
S = (r1 − r3) · −→r2 + (r3 − r2) · −→r1 + (r2 − r1) · −→r3 ,
−→
N = r3 · (−→r1 ∧ −→r2) + r1 · (−→r2 ∧ −→r3) + r2 · (−→r3 ∧ −→r1) .

1. Show that −→ı ∧ −→D = − 1
e

−→
S and deduce the ellipse eccentricity.

2. Show that −→ı is colinear with the vector −→S ∧ −→D .
3. Show that −→ı ∧ −→N = − p

e

−→
S and deduce the ellipse parameter p.

4. Compute the half major axis a of the ellipse in term of the parameter p and the
eccentricity e.

5. Numerical application: in the plane with a Cartesian coordinate system, we
consider the following points:

A1 ( 0
1 ) , A2 ( 2

2 ) , A3 ( 3.5
0 ) , O ( 0

0 ) .

Determine numerically the characteristics of the unique ellipse having O as focal
point and passing through the three points A1, A2 and A3.

2.4.3 Matrix Computations
To construct a matrix, what you want is the matrix function, which allows to
optionally specify the base ring (or field):

sage: A = matrix(QQ, [[1,2],[3,4]]); A
[1 2]
[3 4]

To find a particular solution of the matrix equation Ax = b (resp. xA = b), we call
the solve_right function (resp. solve_left). To find all the solutions, we should
add to that particular solution the general solution of the associated homogeneous
equation. To solve a homogeneous equation Ax = 0 (resp. xA = 0), we use the
right_kernel (resp. left_kernel) function, as in the following exercise.

Exercise 10 (Basis of vector subspace).
1. Determine a basis of the space of solutions of the linear homogeneous system

corresponding to the matrix:

A =

 2 −3 2 −12 33
6 1 26 −16 69

10 −29 −18 −53 32
2 0 8 −18 84

 .

2. Determine a basis of the space F generated by the columns of A.
3. Characterise F by one or several equations.
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Usual functions on matrices

Construction of a matrix matrix
Solving a matrix equation solve_right, solve_left

Right and left kernel right_kernel, left_kernel
Row echelon form echelon_form

Column-generated vector space column_space
Row-generated vector space row_space

Matrix concatenation block_matrix

Matrix reduction

Eigenvalues of a matrix eigenvalues
Eigenvectors of a matrix eigenvectors_right

Jordan normal form reduction jordan_form
Minimal polynomial minimal_polynomial

Characteristic polynomial characteristic_polynomial

Table 2.6 – Matrix computations.

Exercise 11 (A matrix equation). Let us recall the factorisation lemma for linear
maps. Let E,F,G be K-vector spaces of finite dimension. Let u ∈ L(E,F ) and
v ∈ L(E,G). Then the following assertions are equivalent:

i) there exists w ∈ L(F,G) such that v = w ◦ u,

ii) Ker(u) ⊂ Ker(v).

We search all solutions to this problem in a concrete case. Let

A =
(−2 1 1

8 1 −5
4 3 −3

)
and C =

( 1 2 −1
2 −1 −1
−5 0 3

)
.

Determine all solutions B ∈M3(R) of the equation A = BC.

2.4.4 Reduction of a Square Matrix
To study the eigenvalues and eigenvectors of a matrix, all functions from Table 2.6
are available. Those functions will be detailed in Chapter 8. We only give here a
few simple examples of their usage.

Example. Is the matrix A =
( 2 4 3
−4 −6 −3

3 3 1

)
diagonalisable? Triangularisable?

We start by defining the matrix A by giving the base field (QQ=Q), then we
determine its eigenvalues and eigenvectors.

sage: A = matrix(QQ, [[2,4,3],[-4,-6,-3],[3,3,1]])
sage: A.characteristic_polynomial()
x^3 + 3*x^2 - 4
sage: A.eigenvalues()
[1, -2, -2]
sage: A.minimal_polynomial().factor()
(x - 1) * (x + 2)^2
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The minimal polynomial of A admits a simple root and a double root; thus A
is not diagonalisable. However, its minimal polynomial being split into linear
factors, A is triangularisable.

sage: A.eigenvectors_right()
[(1, [(1,−1, 1)] , 1) , (−2, [(1,−1, 0)] , 2)]

sage: A.jordan_form(transformation=True) 1 0 0
0 −2 1
0 0 −2

 ,

 1 1 1
−1 −1 0

1 0 −1


Example. Let us diagonalise the matrix A =

(
1 −1/2

−1/2 −1

)
. We first try the

jordan_form function:
sage: A = matrix(QQ, [[1,-1/2],[-1/2,-1]])
sage: A.jordan_form()
Traceback (most recent call last):
...
RuntimeError: Some eigenvalue does not exist in Rational Field.

A small difficulty appears here: the eigenvalues are not all rational.
sage: A = matrix(QQ, [[1,-1/2],[-1/2,-1]])
sage: A.minimal_polynomial()
x^2 - 5/4

We therefore have to change the base field.
sage: R = QQ[sqrt(5)]
sage: A = A.change_ring(R)
sage: A.jordan_form(transformation=True, subdivide=False) 1

2sqrt5 0

0 −1
2sqrt5

 ,

(
1 1

−sqrt5 + 2 sqrt5 + 2

)
This is to be interpreted as:(( 1

2
√

5 0
0 − 1

2
√

5

)
,

(
1 1

−
√

5 + 2
√

5 + 2

))

Example. Let us diagonalise the matrix A =
(

2
√

6
√

2√
6 3

√
3√

2
√

3 1

)
.

Here, we have to work in an extension of degree 4 of the field Q, for example
as follows.

sage: K.<sqrt2> = NumberField(x^2 - 2)
sage: L.<sqrt3> = K.extension(x^2 - 3)
sage: A = matrix(L, [[2, sqrt2*sqrt3, sqrt2], \
....: [sqrt2*sqrt3, 3, sqrt3], \
....: [sqrt2, sqrt3, 1]])
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sage: A.jordan_form(transformation=True) 6 0 0
0 0 0
0 0 0

 ,

 1 1 0
1
2
√

2
√

3 0 1
1
2
√

2 −
√

2 −
√

3
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3
Programming and Data Structures

The two preceding chapters introduced mathematical computations using one-line
commands, but Sage also allows programs with sequences of instructions.

The Sage computer algebra system is in fact an extension of the Python1 com-
puter language, and allows, with a few exceptions, to use the Python programming
constructs.

The commands described in the previous chapters show that it is not necessary
to know the Python language to use Sage; this chapter explains how to use
the Python programming structures within Sage. Since we only present basic
programming, this chapter can be skipped by the reader fluent in Python; the
examples are chosen among the most classical ones encountered in mathematics,
so that the reader can quickly grasp the Python programming constructs, by
analogy with known programming languages.

This chapter presents in particular the paradigm of structured programming
with loops and tests, then describes functions dealing with lists and other data
structures.

3.1 Syntax

3.1.1 General Syntax
The instructions are generally processed line by line. Python considers the
sharp symbol “#” as the beginning of a comment, until the end of the line.
The semi-colon “;” separates several instructions written on the same line:

1The Sage version considered here uses Python 2.7, which slightly differs from Python 3.
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Python language keywords

while, for...in, if...elif...else loops and tests
continue, break early exit from a code block

try...except...finally, raise deal with and raise exceptions
assert debugging condition
pass no-effect statement

def, lambda definition of a function
return, yield return of a value
global, del scope and deleting variables and functions

and, not, or boolean operations
print text output

class, with object-oriented and context programming
from...import...as library access

exec...in dynamic code evaluation

Table 3.1 – General syntax of the Sagecode.

sage: 2*3; 3*4; 4*5 # one comment, 3 results
6
12
20

In the terminal, a command can be written on several lines by putting a backslash
“\” before each end of line, this character being ignored:

sage: 123 + \
....: 345
468

An identifier — i.e., a variable or function name, etc. — is formed from letters,
digits and the underline symbol “_”, and cannot start with a digit. The user
identifiers should differ from the language keywords, given in Table 3.1, and which
form the core of the Python language. The list of keywords is available by:

sage: import keyword; keyword.kwlist
['and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del',
'elif', 'else', 'except', 'exec', 'finally', 'for', 'from',
'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass',
'print', 'raise', 'return', 'try', 'while', 'with', 'yield']

In addition to these keywords, we have the constants None (empty value, named
NULL in other languages), True and False, and several functions predefined by
Python or Sage like len, cos and integrate. It is better not to use these as
variable names, otherwise some functionalities might no longer be available. The
interpreter knows some additional commands, like quit to exit the Sage session.
We will discover other commands like time or timeit later in this book.

Some symbols have a special meaning in Sage. They are explained in Table 3.2.
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Sage special symbols and their main uses

, ; argument and instruction separators
: beginning of an instruction block
. decimal point, accessing an object field
= assignment of a value to a variable

+ - * / basic arithmetic operations
^ ** power
// % quotient and remainder of Euclidean division

+= -= *= /= **= arithmetic operations with modification of a variable
== != <> is equality tests

< <= > >= comparisons
& | ^^ << >> set operations and bitwise logical operations

# comment (until end of line)
[...] construction of a list, accessing an element by its index
(...) function or method call, immutable tuples

{...:...} dictionary construction
\ special character escape (and linear algebra)
@ applying a decorator to a function

? ?? help and source code access
_ __ ___ last three results

Table 3.2 – General Sage syntax (following).

3.1.2 Function Calls
To evaluate a function, its arguments should be put inside parentheses — for
example cos(pi) — or in the function call without argument reset(). However,
the parentheses are superfluous for a command: the instructions print 6*7 and
print(6*7) are equivalent2. The name of a function without argument nor
parenthesis represents the function itself and performs no computation.

3.1.3 More About Variables
As seen previously, Sage denotes the assignment of a value to a variable by the
equal sign “=”. The expression to the right of the equal sign is first evaluated,
then its value is saved in the variable whose name is on the left. Thus we have:

sage: y = 3; y = 3 * y + 1; y = 3 * y + 1; y
31

The three first assignments change the value of the variable y without any output,
the last command prints the final value of y.

The del x command discards the value assigned to the variable x, and the
function call reset() recovers the initial Sage state.

Several variables can be assigned simultaneously, which differs from sequential
assignments a = b; b = a:

sage: a, b = 10, 20 # (a, b) = (10, 20) and [10, 20] are also possible

2In Python 3, print is a function and thus requires parentheses. This behaviour can be
obtained with from __future__ import print_function.
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sage: a, b = b, a
sage: a, b
(20, 10)

The assignment a, b = b, a is equivalent to swapping the values of a and b
using an auxiliary variable:

sage: temp = a; a = b; b = temp # equivalent to: a, b = b, a

The following trick swaps the values of a and b without any auxiliary variable,
using additions and subtractions:

sage: x, y = var('x, y'); a = x ; b = y
sage: a, b
(x, y)
sage: a = a + b ; b = a - b ; a = a - b
sage: a, b
(y, x)

The instruction a = b = c = 0 assigns the same value, here 0, to several
variables; the instructions x += 5 and n *= 2 are respectively equivalent to x =
x+5 and n = n*2.

The comparison between two objects is performed by the double equal sign
“==”:

sage: 2 + 2 == 2^2, 3 * 3 == 3^3
(True, False)

3.2 Algorithmics
The paradigm of structured programming consists in designing a computer program
as a finite sequence of instructions, which are executed in order. Those instructions
can be atomic or composed:

• an example of atomic instruction is the assignment of a value to a variable
(cf. §1.2.4), or a result output;

• a composed instruction, like a loop or a conditional, is made up from several
instructions, themselves atomic or composed.

3.2.1 Loops
Enumeration Loops. An enumeration loop performs the same computation
for all integer values of an index k ∈ {a, . . . , b}: the following example3 outputs
the beginning of the multiplication table by 7:

3When using Sage in a terminal, such a block of instructions must be ended by an additional
empty line, which will be implicit in the whole book. This is not necessary when using Sage
through a web browser.
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sage: for k in [1..5]:
....: print(7*k) # block containing a single instruction
7
14
21
28
35

The colon symbol “:” at the end of the first line starts the instruction block,
which is evaluated for each successive value 1, 2, 3, 4 and 5 of the variable k. At
each iteration, Sage outputs the product 7k via the print command.

In this example, the repeated instruction block contains a single instruction
(namely print), which is indented to the right with respect to the for keyword.
A block with several instructions has its instructions written one below the other,
with the same indentation.

The block positioning is important: the two programs below, which differ in
the indentation of a single line, yield different results.

sage: S = 0 sage: S = 0
sage: for k in [1..3]: sage: for k in [1..3]:
... S = S+k ... S = S+k
sage: S = 2*S ... S = 2*S
sage: S sage: S

On the left the instruction S = 2*S is executed only once at the end of the loop,
while on the right it is executed at every iteration, which explains the different
results:

S = (0 + 1 + 2 + 3) · 2 = 12 S = ((((0 + 1) · 2) + 2) · 2 + 3) · 2 = 22.

This kind of loop will be useful to compute a given term of a recurrence, cf. the
examples at the end of this section.

The syntax for k in [a..b] for an enumeration loop is the simplest one
and can be used without any problem for 104 or 105 iterations; its drawback
is that it explicitly constructs the list of all possible values of the loop variable
before executing the iteration block, however it manipulates Sage integers of type
Integer (see §5.3.1). Several ..range functions allow iterations with two possible
choices. The first choice is: either construct the list of possible values before
starting the loop, or determine those values along with the loop iterations. The
second choice is between Sage integers4 (Integer) and Python integers (int),
those two integer types having slightly different properties. In case of doubt, the
[a..b] form should be preferred.

While Loops. The other kind of loops are the while loops. Like the enumeration
loops, they execute a certain number of times the same sequence of instructions;

4The commands srange, sxrange and [...] also work on rational and floating-point numbers:
try [pi,pi+5..20] for example.
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Iterations functions of the ..range form for a, b, c integers

for k in [a..b]: ... constructs the list of Sage integers a ≤ k ≤ b
for k in srange (a, b): ... constructs the list of Sage integers a ≤ k < b
for k in range (a, b): ... constructs a list of Python integers (int)
for k in xrange (a, b): ... enumerates Python integers (int) without

explicitly constructing the corresponding list
for k in sxrange (a, b): ... enumerates Sage integers without constructing a list

[a,a+c..b], [a..b, step=c] Sage integers a, a+ c, a+ 2c, . . . as long as a+ kc ≤ b
..range (b) equivalent to ..range (0, b)

..range (a, b, c) sets the iteration increment to c instead of 1

Table 3.3 – The different enumeration loops.

however, here the number of repetitions is not known a priori, but depends on a
condition.

The while loop, as its name says, executes instructions while a given condition
is fulfilled. The following example computes the sum of the squares of non-negative
integers whose exponential is less or equal to 106, i.e., 12 + 22 + · · ·+ 132:

sage: S = 0 ; k = 0 # The sum S starts to 0
sage: while e^k <= 10^6: # e^13 <= 10^6 < e^14
....: S = S + k^2 # accumulates the squares k^2
....: k = k + 1
sage: S
819

The last instruction returns the value of the variable S and outputs the result:

S =
∑
k∈N

ek≤106

k2 =
13∑
k=0

k2 = 819, e13 ≈ 442413 ≤ 106 < e14 ≈ 1202604.

The above instruction block contains two assignments: the first one accumulates
the new term, and the second one moves to the next index. Those two instructions
are indented in the same way inside the while loop structure.

The following example is another typical example of while loop. For a given
number x ≥ 1, it seeks the unique integer n ∈ N satisfying 2n−1 ≤ x < 2n, i.e.,
the smallest integer with x < 2n. The program below compares x to 2n, whose
value is successively 1, 2, 4, 8, etc.; it performs this computation for x = 104:

sage: x = 10^4; u = 1; n = 0 # invariant: u = 2^n
sage: while u <= x: n = n+1; u = 2*u # or n += 1; u *= 2
sage: n
14

As long as the condition 2n ≤ x is satisfied, this program computes the new values
n+ 1 and 2n+1 = 2 · 2n of the two variables n and u, and stores them in place
of n and 2n. The loop ends when the condition is no longer fulfilled, i.e., when
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x < 2n:

x = 104, min{n ∈ N | x < 2n} = 14, 213 = 8192, 214 = 16384.

Note that the body of a while loop is never executed when the condition is false
at the first test.

As seen above, small command blocks can be typed on a single line after the
colon “:”, without creating a new indented block starting at the next line.

Aborting a loop execution

The for and while loops repeat a given number of times the same
instructions. The break command inside a loop interrupts it before its
end, and the continue command goes directly to the next iteration. Those
commands thus allow — among other things — to check the terminating
condition at every place in the loop.

The four examples below determine the smallest positive integer x satis-
fying log(x+ 1) ≤ x/10. The first program (top left) uses a for loop with at
most 100 tries which terminates once the first solution is found; the second
program (top right) looks for the smallest solution and might not terminate
if the condition is never fulfilled; the third (bottom left) is equivalent to the
first one with a more complex loop condition; finally the fourth (bottom
right) has an unnecessarily complex structure, whose unique goal is to exhibit
the continue command. In all cases the final value x is 37.0.

for x in [1.0..100.0]: x=1.0
if log(x+1)<=x/10: break while log(x+1)>x/10:

x=x+1

x=1.0 x=1.0
while log(x+1)>x/10 and x<100: while True:
x=x+1 if log(x+1)>x/10:

x=x+1
continue

break

The return command (which ends the execution of a function and defines
its result, cf. §3.2.3) offers yet another way to abort early from an instruction
block.

Application to Sequences and Series. The for loop enables us to easily
compute a given term of a recurrent sequence. Consider for example the sequence
(un) defined by

u0 = 1, ∀n ∈ N, un+1 = 1
1 + u2

n

.

The following program yields a numerical approximation of un for n = 20; the
variable U is updated at each loop iteration to change from un−1 to un according
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to the recurrence relation. The first iteration computes u1 from u0 for n = 1, the
second one likewise from u1 to u2 when n = 2, and the last of the n iterations
updates U from un−1 to un:

sage: U = 1.0 # or U = 1. or U = 1.000
sage: for n in [1..20]:
....: U = 1 / (1 + U^2)
sage: U
0.682360434761105

The same program with the integer U = 1 instead of the floating-point number
U = 1.0 on the first line will perform exact computations on rational numbers;
then u10 becomes a rational number with several hundreds digits, and u20 has
hundreds of thousands digits. Exact computations are useful when rounding
errors accumulate in numerical approximations. Otherwise, by hand or with the
computer, the computations on numerical approximations of a dozen digits are
faster than those on integers or rational numbers of thousand digits or more.

The sums or products admitting recurrence formulas are computed the same
way:

Sn =
n∑
k=1

(2k)(2k + 1) = 2 · 3 + 4 · 5 + · · ·+ (2n)(2n+ 1),

S0 = 0, Sn = Sn−1 + (2n)(2n+ 1) for n ∈ N− {0}.

The following programming method follows that of recurrent sequences; starting
from 0, we add successive terms for k = 1, k = 2, ..., until k = n:

sage: S = 0 ; n = 10
sage: for k in [1..n]:
....: S = S + (2*k) * (2*k+1)
sage: S
1650

This example highlights a general method to compute a sum; however, in this
simple case, a symbolic computation yields the general answer:

sage: n, k = var('n, k') ; res = sum(2*k*(2*k+1), k, 1, n)
sage: res, factor(res) # result expanded, factorised
(4/3*n^3 + 3*n^2 + 5/3*n, 1/3*(4*n + 5)*(n + 1)*n)

Those results might also be obtained with the pen and pencil method from
well-known sums:

n∑
k=1

k = n(n+ 1)
2 ,

n∑
k=1

k2 = n(n+ 1)(2n+ 1)
6 ,

n∑
k=1

2k (2k + 1) = 4
n∑
k=1

k2 + 2
n∑
k=1

k = 2n (n+ 1)(2n+ 1)
3 + n(n+ 1)

=
n(n+ 1)

(
(4n+ 2) + 3

)
3 = n(n+ 1)(4n+ 5)

3 .
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Example: Approximation of Sequence Limits. While the enumeration
loop is well suited to compute a given term of a sequence or series, the while loop
is adapted to approximate numerically the limit of a sequence.

If a sequence (an)n∈N converges to ` ∈ R, the terms an are close to ` for n
large enough. It is thus possible to approximate ` by a given term an, and the
mathematical problem reduces to finding a bound for the error |` − an|. This
bound is trivial for two sequences (un)n∈N and (vn)n∈N such that

(un)n∈N is increasing,
(vn)n∈N is decreasing,

lim
n→+∞

vn − un = 0.
(3.1)

In this case, 
the two sequences converge to the same limit `,
∀p ∈ N up ≤ lim

n→+∞
un = ` = lim

n→+∞
vn ≤ vp,∣∣`− up+vp

2
∣∣ ≤ vp−up

2 .

A mathematical analysis shows that the two following sequences satisfy the above
properties and converge to

√
ab when 0 < a < b:

u0 = a, v0 = b > a, un+1 = 2unvn
un + vn

, vn+1 = un + vn
2 .

The common limit of these two sequences is called arithmetic-harmonic mean
since the arithmetic mean of a and b is the average (a+ b)/2, and the harmonic
mean is the inverse of the average inverse: 1/h = (1/a+ 1/b)/2 = (a+ b)/(2ab).
The following program checks the limit for given numerical values:

sage: U = 2.0; V = 50.0
sage: while V-U >= 1.0e-6: # 1.0e-6 stands for 1.0*10 -̂6
....: temp = U
....: U = 2 * U * V / (U + V)
....: V = (temp + V) / 2
sage: U, V
(9.99999999989256, 10.0000000001074)

The values un+1 and vn+1 depend on un and vn; for this reason the main loop of
this program introduces an auxiliary variable temp to correctly compute the new
values un+1, vn+1 of U, V from the previous values un, vn. The two left blocks
below define the same sequences, while the right one builds two other sequences:

temp = 2*U*V/(U+V) U,V = 2*U*V/(U+V),(U+V)/2 U = 2*U*V/(U+V)
V = (U+V)/2 V = (U+V)/2
U = temp (parallel assignment) u′n+1 = 2u′nv

′
n

u′n+v′n
v′n+1 = u′n+1+v′n

2

The series Sn =
∑n
k=0(−1)kak is alternating as soon as the sequence (ak)k∈N

is decreasing and tends to zero. Since S is alternating, the two subsequences
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(S2n)n∈N and (S2n+1)n∈N satisfy Eq. (3.1), with common limit say `. Hence the
sequence (Sn)n∈N also converges to ` and we have S2p+1 ≤ ` = limn→+∞ Sn ≤
S2p.

The following program illustrates this result for the sequence ak = 1/k3 from
k = 1, by storing in two variables U and V the partial sums S2n and S2n+1
enclosing the limit:

sage: U = 0.0 # the sum S0 is empty, of value zero
sage: V = -1.0 # S1 = -1/1^3
sage: n = 0 # U and V contain S(2n) and S(2n+1)
sage: while U-V >= 1.0e-6:
....: n = n+1 # n += 1 is equivalent
....: U = V + 1/(2*n)^3 # going from S(2n-1) to S(2n)
....: V = U - 1/(2*n+1)^3 # going from S(2n) to S(2n+1)
sage: V, U
(-0.901543155458595, -0.901542184868447)

The main loop increases the value of n until the two terms S2n and S2n+1 are
close enough. The two variables U and V contain two consecutive terms; the loop
body computes S2n from S2n−1, and then S2n+1 from S2n, whence the crossed
assignments to U and V.

The program halts when two consecutive terms S2n+1 and S2n surrounding
the limit are close enough, the approximation error — without taking into account
rounding errors — satisfies then 0 ≤ a2n+1 = S2n − S2n+1 ≤ 10−6.

Programming these five alternating series is similar:∑
n≥2

(−1)n
logn ,

∑
n≥1

(−1)n
n

,
∑
n≥1

(−1)n
n2 ,

∑
n≥1

(−1)n
n4 ,

∑
n≥1

(−1)ne−n lnn =
∑
n≥1

(−1)n
nn

.

The terms of those series converge more or less rapidly to 0, thus the limit
approximations require more or fewer computations.

Looking for a precision of 3, 10, 20 or 100 digits on the limits of these series
consists in solving the following inequalities:

1/ logn ≤ 10−3 ⇐⇒ n ≥ e(103) ≈ 1.97 · 10434

1/n ≤ 10−3 ⇐⇒ n ≥ 103 1/n ≤ 10−10 ⇐⇒ n ≥ 1010

1/n2 ≤ 10−3 ⇐⇒ n ≥
√

103 ≈ 32 1/n2 ≤ 10−10 ⇐⇒ n ≥ 105

1/n4 ≤ 10−3 ⇐⇒ n ≥ (103)1/4 ≈ 6 1/n4 ≤ 10−10 ⇐⇒ n ≥ 317
e−n logn ≤ 10−3 ⇐⇒ n ≥ 5 e−n logn ≤ 10−10 ⇐⇒ n ≥ 10

1/n2 ≤ 10−20 ⇐⇒ n ≥ 1010 1/n2 ≤ 10−100 ⇐⇒ n ≥ 1050

1/n4 ≤ 10−20 ⇐⇒ n ≥ 105 1/n4 ≤ 10−100 ⇐⇒ n ≥ 1025

e−n logn ≤ 10−20 ⇐⇒ n ≥ 17 e−n logn ≤ 10−100 ⇐⇒ n ≥ 57

In the simplest cases solving these inequalities yields an index n from which
the value Sn is close enough to the limit `, and then a for enumeration loop is
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possible. However, when it is not possible to solve the inequality an ≤ 10−p, a
while loop is necessary.

Numerical approximations of some of the above limits are too expensive, in
particular when the index n gets as large as 1010 or 1012. A mathematical study
can sometimes determine the limit or approach it by other methods, like for the
series giving values of the Riemann zeta function:

lim
n→+∞

n∑
k=1

(−1)k
k3 = −3

4 ζ(3), with ζ(p) = lim
n→+∞

n∑
k=1

1
kp

,

lim
n→+∞

n∑
k=1

(−1)k
k

= − log 2, lim
n→+∞

n∑
k=1

(−1)k
k2 = −π

2

12 ,

lim
n→+∞

n∑
k=1

(−1)k
k4 = −7π4

6! .

Sage is able to compute symbolically some of these series, and determine a
1200-digit numerical approximation of ζ(3) in a few seconds, by doing far fewer
operations than the 10400 ones required by the definition:

sage: k = var('k'); sum((-1)^k/k, k, 1, +oo)
-log(2)
sage: sum((-1)^k/k^2, k, 1, +oo), sum((-1)^k/k^3, k, 1, +oo)
(-1/12*pi^2, -3/4*zeta(3))
sage: -3/4 * zeta (N(3, digits = 1200))
-0.901542677369695714049803621133587493073739719255374161344\
203666506378654339734817639841905207001443609649368346445539\
563868996999004962410332297627905925121090456337212020050039\
...
019995492652889297069804080151808335908153437310705359919271\
798970151406163560328524502424605060519774421390289145054538\
901961216359146837813916598064286672255343817703539760170306262

3.2.2 Conditionals
Another important instruction is the conditional (or test), which enables us to
execute some instructions depending on the result of a boolean condition. The
structure of the conditional and two possible syntaxes are:

if a condition: if a condition:
an instruction sequence an instruction sequence

else:
another instruction sequence

The Syracuse sequence is defined using a parity condition:

u0 ∈ N− {0}, un+1 =
{
un/2 if un is even
3un + 1 if un is odd.
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The Collatz conjecture says — with no known proof in 2017 — that for all initial
values u0 ∈ N− {0}, there exists a rank n for which un = 1. The next terms are
then 4, 2, 1, 4, 2, etc. The computation of each term of this sequence requires a
parity test. This condition is checked within a while loop, which determines the
smallest n ∈ N satisfying un = 1:

sage: u = 6 ; n = 0
sage: while u != 1: # the test u <> 1 is also possible
....: if u % 2 == 0: # the operator % yields the remainder
....: u = u//2 # //: Euclidean division quotient
....: else:
....: u = 3*u+1
....: n = n+1
sage: n
8

Checking whether un is even is done by comparing to 0 the remainder of the
Euclidean division of un by 2. The variable n at the end of the block is the
number of iterations. The loop ends as soon as un = 1; for example if u0 = 6
then u8 = 1 and 8 = min{p ∈ N|up = 1}:

p = 0 1 2 3 4 5 6 7 8 9 10 · · ·
up = 6 3 10 5 16 8 4 2 1 4 2 · · ·

Verifying step-by-step the correct behaviour of the loop can be done using a
spy-instruction print(u, n) inside the loop body.

The if instruction also allows nested tests in the else branch using the elif
keyword. The two following structures are thus equivalent:

if a condition cond1: if cond1:
an instruction sequence inst1 inst1

else: elif cond2:
if a condition cond2: inst2

an instruction sequence inst2 elif cond3:
else: inst3

if a condition cond3: else:
an instruction sequence inst3 instn

else:
in other cases instn

Like for loops, small instruction sequences may be put after the colon on the
same line, rather than in an indented block below.

3.2.3 Procedures and Functions
General Syntax. As in other computer languages, the Sage user can define
her/his own procedures or functions, using the def command whose syntax is
detailed below. In this book, we call a function (resp. procedure) a sub-program
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with zero, one or several arguments, which returns (resp. does not return) a result.
Let us define the function (x, y) 7→ x2 + y2:

sage: def fct2 (x, y):
....: return x^2 + y^2
sage: a = var('a')
sage: fct2 (a, 2*a)
5*a^2

The function evaluation ends with the return command, whose argument, here
x2 + y2, is the result of the function.

A procedure is like a function, but does not return any value, and without
any return instruction the instruction body of the procedure is evaluated until
its end. In fact a procedure returns the None value, which means “nothing”.

By default, all variables appearing in a function are considered local variables.
Local variables are created at each function call, destroyed at the end of the
function, and do not interact with other variables of the same name. In particular,
global variables are not modified by the evaluation of a function having local
variables of the same name:

sage: def foo (u):
....: t = u^2
....: return t*(t+1)
sage: t = 1 ; u = 2
sage: foo(3), t, u
(90, 1, 2)

It is possible to modify a global variable from within a function, with the global
keyword:

sage: a = b = 1
sage: def f(): global a; a = b = 2
sage: f(); a, b
(2, 1)

Consider again the computation of the arithmetic-harmonic mean of two
positive numbers:

sage: def AHmean (u, v):
....: u, v = min(u, v), max(u, v)
....: while v-u > 2.0e-8:
....: u, v = 2*u*v/(u+v), (u+v)/2
....: return (u+v) / 2

sage: AHmean (1., 2.)
1.41421356237309
sage: AHmean # corresponds to a function
<function AHmean at ...>
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The AHmean function has two parameters u and v which are local variables, whose
initial values are those of the function arguments; for example with AHmean (1.,
2.) the function body begins with u = 1.0 and v = 2.0.

The structured programming paradigm recommends to have the return
statement at the very end of the function body. However, it is possible to put it
in the middle of the instruction block, then the following instructions will not be
executed. And the function body might contain several return occurrences.

Translating the mathematician’s viewpoint into the computer suggests the
use of functions that return results from their arguments, instead of procedures
that output those results with a print command. The Sage computer algebra
system is itself built on numerous functions like exp or solve, which return a
result, for example a number, an expression, a list of solutions, etc.

Iterative and Recursive Methods. As we have seen above, a user-defined
function is a sequence of instructions. A function is called recursive when during
its evaluation, it calls itself with different parameters. The factorial sequence is a
toy example of recursive sequence:

0! = 1, (n+ 1)! = (n+ 1)n! for all n ∈ N.

The two following functions yield the same result for a nonnegative integer
argument n; the first function uses the iterative method with a for loop, while
the second one is a word-by-word translation of the above recursive definition:

sage: def fact1 (n):
....: res = 1
....: for k in [1..n]: res = res*k
....: return res

sage: def fact2 (n):
....: if n == 0: return 1
....: else: return n*fact2(n-1)

The Fibonacci sequence is a recurrent relation of order 2 since un+2 depends on
un and un+1:

u0 = 0, u1 = 1, un+2 = un+1 + un for all n ∈ N.

The function fib1 below applies an iterative scheme to compute terms of the
Fibonacci sequence: the variables U and V store the two previous values before
computing the next one:

sage: def fib1 (n):
....: if n == 0 or n == 1: return n
....: else:
....: U = 0 ; V = 1 # the initial terms u0 and u1
....: for k in [2..n]: W = U+V ; U = V ; V = W
....: return V
sage: fib1(8)
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21

The for loop applies the relation un = un−1 + un−2 from n = 2. Note: a parallel
assignment U,V = V,U+V in place of W=U+V ; U=V ; V=W would avoid the need
of an auxiliary variable W, and would translate the order-1 vectorial recurrence
Xn+1 = f(Xn) with f(a, b) = (b, a + b), for Xn = (un, un+1). Those iterative
methods are efficient, however programming them requires to manually deal with
variables corresponding to different terms of the sequence.

On the contrary, the recursive function fib2 follows more closely the mathe-
matical definition of the Fibonacci sequence, which makes its programming and
understanding easier:

sage: def fib2 (n):
....: if 0 <= n <= 1: return n # for n = 0 or n = 1
....: else: return fib2(n-1) + fib2(n-2)

The result of this function is the value returned by the conditional statement: either
0 or 1 respectively for n = 0 and n = 1, otherwise the sum fib2(n-1)+fib2(n-2);
each branch of the test consists of a return instruction.

This method is however less efficient since several computations are duplicated.
For example fib2(5) evaluates fib2(3) and fib2(4), which are in turn evaluated
in the same manner. Therefore, Sage computes twice fib2(3) and three times
fib2(2). This recursive process ends by the evaluation of either fib2(0) or
fib2(1), of value 0 or 1, and the evaluation of fib2(n) eventually consists in
computing un by adding un ones, and un−1 zeroes. The total number of additions
performed to compute un is thus un+1 − 1. This number grows very quickly, and
no computer is able to compute u100 this way.

Other methods are also possible, for example remembering the intermediate
terms using the decorator @cached_function, or using properties of matrix
powers: the following paragraph shows how to compute the millionth term of this
sequence. For example, compare the efficiency of the function fib2 defined above
with the following one, for example on n = 30:

sage: @cached_function
sage: def fib2a (n):
....: if 0 <= n <= 1: return n
....: else: return fib2a(n-1) + fib2a(n-2)

3.2.4 Example: Fast Exponentiation

The naive method for computing an for n ∈ N performs n multiplications by a
using a for loop:

sage: a = 2; n = 6; res = 1 # 1 is the product neutral element
sage: for k in [1..n]: res = res*a
sage: res # the value of res is 2^6
64
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Integer powers often arise in mathematics and computer science; this paragraph
discusses a general method to compute an in a much faster way than the naive
method. The sequence (un)n∈N below satisfies un = an; this follows by induction
from the equalities a2k = (ak)2 and ak+1 = a ak:

un =


1 if n = 0,
u2
n/2 if n is even positive,
a un−1 if n is odd.

(3.2)

For example, for n = 11:

u11 = a u10, u10 = u2
5, u5 = a u4, u4 = u2

2,
u2 = u2

1, u1 = a u0 = a;

therefore:

u2 = a2, u4 = u2
2 = a4, u5 = a a4 = a5,

u10 = u2
5 = a10, u11 = a a10 = a11.

The computation of un only involves terms uk with k ∈ {0, ..., n− 1}, and is thus
well performed in a finite number of operations.

This example also shows that u11 is obtained after the evaluation of 6 terms u10,
u5, u4, u2, u1 and u0, which performs 6 multiplications only. In general, the
computation of un requires between logn/ log 2 and 2 logn/ log 2 multiplications.
Indeed, un is obtained from uk, k ≤ n/2, with one or two additional steps,
according to the parity of n. This method is thus much faster than the naive one
when n is large: about twenty products for n = 104 instead of 104 products:

indices k: 10 000 5 000 2 500 1 250 625 624 312 156 78
39 38 19 18 9 8 4 2 1

However, this method is not always the best one; the following operations using
b, c, d and f perform 5 products to compute a15, whereas the above method —
using u, v, w, x and y — requires 6 products, without counting the initial product
a · 1:

b = a2 c = ab = a3 d = c2 = a6 f = cd = a9 df = a15 : 5 products;
u = a2 v = au = a3 w = v2 = a6

x = aw = a7 y = x2 = a14 ay = a15 : 6 products.

The recursive function pow1 uses the recurrent sequence (3.2) to compute an:
sage: def pow1 (a, n):
....: if n == 0: return 1
....: elif n % 2 == 0: b = pow1 (a, n//2); return b*b
....: else: return a * pow1(a, n-1)

sage: pow1 (2, 11) # result is 2^11
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2048

The number of operations performed by this function is the same as a computation
by hand using (3.2). In the case n is even, if the instructions b = pow1(a,
n//2);return b*b would be replaced by pow1(a, n//2)*pow1(a, n//2), Sage
would perform much more computations because, like for the recursive function
fib2 for the Fibonacci sequence, some calculations would be duplicated. We
would then have of the order of n products, i.e., as many as with the naive
method.

Note that instead of b = pow1(a, n//2);return b*b, we could write return
pow1(a*a, n//2).

The program below performs the same computation of an using an iterative
method:

sage: def pow2 (u, k):
....: v = 1
....: while k != 0:
....: if k % 2 == 0: u = u*u ; k = k//2
....: else: v = v*u ; k = k-1
....: return v

sage: pow2 (2, 10) # result is 2^10
1024

The fact that pow2(a, n) returns an is shown by verifying that after each iteration
the values of the variables u, v and k satisfy v uk = an, for whatever parity of k.
Before the first iteration v = 1, u = a and k = n; after the last one k = 0, thus
v = an.

The successive values of the integer variable k are nonnegative, and they form
a decreasing sequence. Hence this variable can only take a finite number of values
before being zero and terminating the loop.

Despite their apparent differences — pow1 is recursive, while pow2 is iterative
— those two functions express almost the same algorithm: the only difference is
that a2k is evaluated as (ak)2 in pow1, and as (a2)k in pow2, through the update
of the variable u.

The method presented here is not limited to the computation of an where
a is a number and n a positive integer, it applies to any associative law (which
is needed to preserve usual properties of iterated products). For instance, by
replacing the integer 1 by the m×m unit matrix 1m, the two above functions
would evaluate powers of square matrices. Those functions show how to efficiently
implement the power operator “ˆ” upon multiplication, and are similar to the
method implemented within Sage.

For example, using powers of matrices enables us to compute much larger
terms of the Fibonacci sequence:

A =
(

0 1
1 1

)
, Xn =

(
un
un+1

)
, AXn = Xn+1, AnX0 = Xn.
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The corresponding Sage program fits in two lines, and the wanted result is the
first coordinate of the matrix product AnX0, which effectively works for n = 107;
the fib3 and fib4 programs are equivalent, and their efficiency comes from the
fact that Sage implements a fast exponentiation method:

sage: def fib3 (n):
....: A = matrix ([[0, 1], [1, 1]]) ; X0 = vector ([0, 1])
....: return (A^n*X0)[0]

sage: def fib4 (n):
....: return (matrix([[0,1], [1,1]])^n * vector([0,1]))[0]

3.2.5 Input and Output
The print instruction is the main output command. By default, its arguments
are printed one after the other, separated by spaces, with a newline after the
command:

sage: print 2^2, 3^3, 4^4 ; print 5^5, 6^6
4 27 256
3125 46656

A comma at the end tells the next print instruction to continue on the same
line:

sage: for k in [1..10]: print '+', k,
+ 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

To print results without intermediate spaces, we can transform them into a
character string using the str(..) function, and concatenate strings with the “+”
operator:

sage: print 10, 0.5 ; print 10+0.5 ; print 10.0, 5
10 0.500000000000000
10.5000000000000
10.0000000000000 5
sage: print 10+0, 5 ; print(str(10)+str(0.5))
10 5
100.500000000000000

The last section of this chapter discusses in more detail character strings.
The print command is also able to format the output: the following example

prints a table of fourth powers using the %.d placeholder and the % operator:
sage: for k in [1..6]: print('%2d^4 = %4d' % (k, k^4))
1^4 = 1
2^4 = 16
3^4 = 81
4^4 = 256
5^4 = 625
6^4 = 1296
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The % operator replaces the expressions to its right in the character string to its
left, in place of the placeholders like %2d or %.4f. In the above example the %4d
specifier adds some left padding spaces to the string representing k4, to get at
least four characters. Likewise, the %.4f placeholder in ’pi = %.4f’ % n(pi)
outputs pi = 3.1416 with four digits after the decimal point.

In a terminal, the raw_input(’message’) command prints the text message,
waits a keyboard input validated by the 〈Enter〉 key, and returns the user-given
character string.

3.3 Lists and Other Data Structures
This section discusses some data structures available in Sage: character strings,
lists — either mutable or immutable —, sets and dictionaries.

3.3.1 List Creation and Access
The list in computer science and the n-tuple in mathematics allow the enumeration
of mathematical objects. In a pair — with (a, b) 6= (b, a) — and an n-tuple, each
object has its own position, contrary to a set.

A list is defined by surrounding its elements with square brackets [...],
separated by commas. Assigning the triple (10, 20, 30) to the variable L is done
as follows, and the empty list is defined as:

sage: L = [10, 20, 30]
sage: L
[10, 20, 30]
sage: [] # [] is the empty list
[]

The list indices are increasing from 0, 1, 2, etc. The element of index k of a list
L is accessed simply by L[k], in mathematical terms this corresponds to the
canonical projection on the k-th coordinate. The number of elements of a list is
given by the len function5:

sage: L[1], len(L), len([])
(20, 3, 0)

Modifying an element is done the same way, by simply assigning the corresponding
index. Hence the following command modifies the third term of the list, whose
index is 2:

sage: L[2] = 33
sage: L
[10, 20, 33]

Negative indices access end-of-list elements, L[-1] referring to the last one:

5The output of len is a Python integer of type int, to get a Sage integer we write
Integer(len(..)).
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sage: L = [11, 22, 33]
sage: L[-1], L[-2], L[-3]
(33, 22, 11)

The command L[p:q] extracts the sub-list [L[p], L[p+1], ..., L[q-1]],
which is empty if q ≤ p. Negative indices allow to reference the last terms of the
list; finally L[p:] is equivalent to L[p:len(L)], and L[:q] to L[0:q]:

sage: L = [0, 11, 22, 33, 44, 55]
sage: L[2:4]
[22, 33]
sage: L[-4:4]
[22, 33]
sage: L[2:-2]
[22, 33]
sage: L[:4]
[0, 11, 22, 33]
sage: L[4:]
[44, 55]

Similarly to the L[n] = ... command which modifies an element of the list, the
assignment L[p:q] = [...] substitutes all elements between index p included
and index q excluded:

sage: L = [0, 11, 22, 33, 44, 55, 66, 77]
sage: L[2:6] = [12, 13, 14] # substitutes [22, 33, 44, 55]

Therefore, L[:1] = [] and L[-1:] = [] delete respectively the first and last
term of a list, and likewise L[:0] = [a] and L[len(L):] = [a] insert the
element a respectively in front and in tail of the list. More generally the following
equalities hold:

L= [`0, `1, `2, . . . , `n−1] = [`−n, `1−n, . . . `−2, `−1] with n = len(L),
`k = `k−n for 0 ≤ k < n, `j = `n+j for −n ≤ j < 0.

The operator in checks whether a list contains a given element, while “==”
compares two lists elementwise. The two sub-lists below with positive or negative
indices are equal:

sage: L = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
sage: L[3:len(L)-5] == L[3-len(L):-5]
True
sage: [5 in L, 6 in L]
[True, False]

While we have considered so far lists with integer elements, list elements can be
any Sage object: numbers, expressions, other lists, etc.
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3.3.2 Global List Operations
The addition operator “+” concatenates two lists, and the multiplication operator
“*”, together with an integer, performs an iterated concatenation:

sage: L = [1, 2, 3] ; L + [10, 20, 30]
[1, 2, 3, 10, 20, 30]
sage: 4 * [1, 2, 3]
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]

The concatenation of the two sub-lists L[:k] and L[k:] reconstructs the original
list. This explains why the left bound p of a sub-list L[p:q] is included, while
the right bound q is excluded:

L= L[:k]+L[k:] = [`0, `1, `2, . . . , `n−1]
= [`0, `1, `2, . . . , `k−1] + [`k, `k+1, `k+2, . . . , `n−1].

This property is shown in the following example:

sage: L = 5*[10, 20, 30] ; L[:3]+L[3:] == L
True

The operator made from two points “..” makes it easy to construct integer
lists without explicitly enumerating all elements, and can be mixed with isolated
elements:

sage: [1..3, 7, 10..13]
[1, 2, 3, 7, 10, 11, 12, 13]

We explain below how to build the image of a list under a function, and a
sub-list of a list. The corresponding functions are map and filter, together with
the [..for..x..in..] construction. Mathematics often involve lists made by
applying a function f to its elements:

(a0, a1, . . . , an−1) 7→ (f(a0), f(a1), . . . , f(an−1)).

The map command builds this “map”: the following example applies the trigono-
metric function cos to a list of usual angles:

sage: map (cos, [0, pi/6, pi/4, pi/3, pi/2])
[1, 1/2*sqrt(3), 1/2*sqrt(2), 1/2, 0]

A user-defined function — with def — or a lambda-expression might also be used
as first argument of map; the following command is equivalent to the above, using
the function t 7→ cos t:

sage: map (lambda t: cos(t), [0, pi/6, pi/4, pi/3, pi/2])
[1, 1/2*sqrt(3), 1/2*sqrt(2), 1/2, 0]

The lambda command is followed by the parameters separated by commas,
and the colon must be followed by exactly one expression, which is the function
result (without the return keyword).
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A lambda expression may contain a test, whence the following functions are
equivalent:

fctTest1 = lambda x: res1 if cond else res2
def fctTest2 (x):
if cond: return res1
else: return res2

As a consequence, the three following map commands are equivalent, the
composition N ◦ cos being expressed in different ways:

sage: map (lambda t: N(cos(t)), [0, pi/6, pi/4, pi/3, pi/2])
[1.00000000000000, 0.866025403784439, 0.707106781186548,
0.500000000000000, 0.000000000000000]

sage: map (N, map (cos, [0, pi/6, pi/4, pi/3, pi/2]))
[1.00000000000000, 0.866025403784439, 0.707106781186548,
0.500000000000000, 0.000000000000000]

sage: map (compose(N, cos), [0, pi/6, pi/4, pi/3, pi/2])
[1.00000000000000, 0.866025403784439, 0.707106781186548,
0.500000000000000, 0.000000000000000]

The filter command builds the sub-list of the elements satisfying a given
condition. To get all integers in 1, ..., 55 that are prime:

sage: filter (is_prime, [1..55])
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]

The test condition might be defined inside the filter command, as in the
following example which finds by exhaustive search all fourth roots of 7 modulo
the prime 37; this equation has four solutions 3, 18, 19 and 34:

sage: p = 37 ; filter (lambda n: n^4 % p == 7, [0..p-1])
[3, 18, 19, 34]

Another way to build a list is using the comprehension form [..for..x..in..];
both commands below enumerate odd integers from 1 to 31:

sage: map(lambda n:2*n+1, [0..15])
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31]
sage: [2*n+1 for n in [0..15]]
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31]

The comprehension command is independent of the for loop. Associated with
the if condition, it yields an equivalent construction to filter:

sage: filter (is_prime, [1..55])
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]
sage: [p for p in [1..55] if is_prime(p)]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]
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In the two following examples, we combine the if and filter tests with the
comprehension for to determine a list of primes congruent to 1 modulo 4, then a
list of squares of prime numbers:

sage: filter (is_prime, [4*n+1 for n in [0..20]])
[5, 13, 17, 29, 37, 41, 53, 61, 73]
sage: [n^2 for n in [1..20] if is_prime(n)]
[4, 9, 25, 49, 121, 169, 289, 361]

In the first case the is_prime test is performed after the computation of 4n+ 1,
while in the second one the primality test is done before the computation of the
square n2.

The reduce function operates by associativity from left to right on the elements
of a list. Let us define the following operation, say ?:

x ? y = 10x+ y, then ((1 ? 2) ? 3) ? 4 = (12 ? 3) ? 4 = 1234.

The first argument of reduce is a two-parameter function, the second one is the
list of its arguments:

sage: reduce (lambda x, y: 10*x+y, [1, 2, 3, 4])
1234

A third optional argument gives the image of an empty list:
sage: reduce (lambda x, y: 10*x+y, [9, 8, 7, 6], 1)
19876

This third argument usually corresponds to the neutral element of the operation
that is applied. The following example computes a product of odd integers:

sage: L = [2*n+1 for n in [0..9]]
sage: reduce (lambda x, y: x*y, L, 1)
654729075

The Sage functions add6 and prod apply directly the reduce operator to compute
sums and products; the three examples below yield the same result. The list
form enables us to add an optional second argument which stands for the neutral
element, 1 for the product and 0 for the sum, or a unit matrix for a matrix
product:

sage: prod ([2*n+1 for n in [0..9]], 1) # a list with for
654729075
sage: prod ( 2*n+1 for n in [0..9]) # without a list
654729075
sage: prod (n for n in [0..19] if n%2 == 1)
654729075

The function any associated to the or operator, and the function all to the and
operator, have similar syntax. Their evaluation terminates as soon as the result
True or False obtained for one term avoids the evaluation of the next terms:

6Do not confuse add with sum, which looks for a symbolic expression of a sum.
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sage: def fct (x): return 4/x == 2
sage: all (fct(x) for x in [2, 1, 0])
False
sage: any (fct(x) for x in [2, 1, 0])
True

In contrast, the construction of the list [fct(x) for x in [2, 1, 0]] and the
command all([fct(x) for x in [2, 1, 0]]) produce an error because all
terms are evaluated, including the last one with x = 0.

Nesting several for operators enables us to construct the cartesian product of
two lists, or to define lists of lists. As seen in the following example, the leftmost
for operator corresponds to the outermost loop:

sage: [[x, y] for x in [1..2] for y in [6..8]]
[[1, 6], [1, 7], [1, 8], [2, 6], [2, 7], [2, 8]]

The order therefore differs from that obtained by constructing a list of lists using
nested for comprehensions:

sage: [[[x, y] for x in [1..2]] for y in [6..8]]
[[[1, 6], [2, 6]], [[1, 7], [2, 7]], [[1, 8], [2, 8]]]

The map command with several lists as arguments takes one element of each
list in turn:

sage: map (lambda x, y: [x, y], [1..3], [6..8])
[[1, 6], [2, 7], [3, 8]]

Finally with the flatten command, we can concatenate lists on one or several
levels:

sage: L = [[1, 2, [3]], [4, [5, 6]], [7, [8, [9]]]]
sage: flatten (L, max_level = 1)
[1, 2, [3], 4, [5, 6], 7, [8, [9]]]
sage: flatten (L, max_level = 2)
[1, 2, 3, 4, 5, 6, 7, 8, [9]]
sage: flatten (L) # equivalent to flatten (L, max_level = 3)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

These elementary list operations are quite useful in other parts of Sage; the
following example computes the first successive derivatives of x ex; the first
argument of diff is the expression to differentiate, and the following argument
is the derivation variable, or in the case of several arguments the variables with
respect to which the expression should be successively differentiated:

sage: x = var('x')
sage: factor(diff(x*exp(x), [x, x]))
(x + 2)*e^x
sage: map(lambda n: factor(diff(x*exp(x), n*[x])), [0..6])
[x*e^x, (x + 1)*e^x, (x + 2)*e^x, (x + 3)*e^x, (x + 4)*e^x,
(x + 5)*e^x, (x + 6)*e^x]
sage: [factor (diff (x*exp(x), n*[x])) for n in [0..6]]



3.3. LISTS AND OTHER DATA STRUCTURES 65

[x*e^x, (x + 1)*e^x, (x + 2)*e^x, (x + 3)*e^x, (x + 4)*e^x,
(x + 5)*e^x, (x + 6)*e^x]

The diff command admits more than one syntax. The parameters after the
function f can be a list of variables, an enumeration of variables, or a variable
and an order of derivation:

diff(f(x), x, x, x), diff(f(x), [x, x, x]), diff(f(x), x, 3).

We can also use diff(f(x), 3) for functions of one variable. The above results
are a direct consequence of Leibniz’ formula for iterated derivatives of a 2-term
product, given the fact that the derivatives of order 2 or more of x are zero:

(xex)(n) =
n∑
k=0

(
n

k

)
x(k)(ex)(n−k) = (x+ n)ex.

3.3.3 Main Methods on Lists
The reverse method reverts the order of elements in a list, and the sort method
transforms the given list into a sorted one:

sage: L = [1, 8, 5, 2, 9] ; L.reverse() ; L
[9, 2, 5, 8, 1]
sage: L.sort() ; L
[1, 2, 5, 8, 9]
sage: L.sort(reverse = True) ; L
[9, 8, 5, 2, 1]

Both methods modify the list L in-place, the initial list being lost.
A first optional argument of sort enables us to choose the order relation,

in form of a two-parameter function Order(x, y). The returned value of this
function must have the type int of the Python integers; it is negative, zero or
positive, for example −1, 0 or 1, when x ≺ y, x = y or x � y, respectively. The
transformed list (x0, x1, . . . , xn−1) satisfies x0 � x1 � · · · � xn−1.

The lexicographic order of two number lists of same length is similar to the
alphabetic order and is defined as follows, ignoring the first equal terms:

P = (p0, p1, . . . pn−1) ≺lex Q = (q0, q1, . . . qn−1)
⇐⇒ ∃r ∈ {0, . . . , n− 1} (p0, p1, . . . , pr−1) = (q0, q1, . . . , qr−1) and pr < qr.

The following function compares two lists of equal lengths. Despite the a priori
infinite loop while True, the return commands ensure the termination, together
with the finite length. The result is −1, 0 or 1 according to P ≺lex Q, P = Q or
P �lex Q:

sage: def alpha (P, Q): # len(P) = len(Q) by hypothesis
....: i = 0
....: while True:
....: if i == len(P): return int(0)
....: elif P[i] < Q[i]: return int(-1)
....: elif P[i] > Q[i]: return int(1)
....: else: i = i+1
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sage: alpha ([2, 3, 4, 6, 5], [2, 3, 4, 5, 6])
1

The following command sorts a list of lists of same length using the lexicographic
order. The alpha function using the same order as used by Sage to compare two
lists, the command L.sort() without optional argument is thus equivalent:

sage: L = [[2, 2, 5], [2, 3, 4], [3, 2, 4], [3, 3, 3],\
....: [1, 1, 2], [1, 2, 7]]
sage: L.sort (cmp = alpha) ; L
[[1, 1, 2], [1, 2, 7], [2, 2, 5], [2, 3, 4], [3, 2, 4], [3, 3, 3]]

The homogeneous lexicographic order first compares terms according to their
weight, where the weight is the sum of coefficients, and only in the case of equal
weights resorts to the lexicographic order:

P = (p0, p1, . . . pn−1) ≺lexH Q = (q0, q1, . . . qn−1)

⇐⇒
n−1∑
k=0

pk <

n−1∑
k=0

qk or
( n−1∑
k=0

pk =
n−1∑
k=0

qk and P ≺lex Q
)
.

This function implements the homogeneous lexicographic order:

sage: def homogLex (P, Q):
....: sp = sum (P) ; sq = sum (Q)
....: if sp < sq: return int(-1)
....: elif sp > sq: return int(1)
....: else: return alpha (P, Q)

sage: homogLex ([2, 3, 4, 6, 4], [2, 3, 4, 5, 6])
-1

The Sage function sorted is a function in the mathematical sense: it takes as
first argument a list and returns the corresponding sorted list, without modifying
its argument, unlike sort.

Sage provides other methods on lists, to insert an element at the tail, to
append a list at the end, to count the number of occurrences of an element:

L.append(x) is equivalent to L[len(L):] = [x]
L.extend(L1) is equivalent to L[len(L):] = L1
L.insert(i, x) is equivalent to L[i:i] = [x]
L.count(x) is equivalent to len ([t for t in L if t == x])

The commands L.pop(i) and L.pop() remove the element of index i, or the
last one, and return the removed element; their behaviour is described by these
two functions:

def pop1 (L, i): def pop2 (L):
a = L[i] return pop1 (L, len(L)-1)
L[i:i+1] = []
return a
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In addition, L.index(x) returns the index of the first element equal to x, and
L.remove(x) removes the first element equal to x. These commands raise an
error when x is not in the list. Finally, the command del L[p:q] is equivalent
to L[p:q] = [], and del L[i] removes the ith element.

Contrary to what happens in several other computer languages, these functions
modify in-place the list L, without creating a new list.

3.3.4 Examples of List Manipulations
The following example constructs the list of even terms and the list of odd terms
of a given list. This first solution goes twice through the list, and thus performs
the parity tests twice:

sage: def fct1(L):
....: return [filter (lambda n: n % 2 == 0, L),
....: filter (lambda n: n % 2 == 1, L)]

sage: fct1([1..10])
[[2, 4, 6, 8, 10], [1, 3, 5, 7, 9]]

The second function below goes only once through the list, and constructs the
two result lists element by element:

sage: def fct2 (L):
....: res0 = [] ; res1 = []
....: for k in L:
....: if k%2 == 0: res0.append(k) # or res0[len(res0):] = [k]
....: else: res1.append(k) # or res1[len(res1):] = [k]
....: return [res0, res1]

This program replaces the for loop and the auxiliary variables by a recursive call
and an additional parameter:

sage: def fct3a (L, res0, res1):
....: if L == []: return [res0, res1]
....: elif L[0]%2 == 0: return fct3a(L[1:], res0+[L[0]], res1)
....: else: return fct3a (L[1:], res0, res1+[L[0]])

sage: def fct3 (L): return fct3a (L, [], [])

The parameters res0 and res1 contain the first element already treated, and the
parameter list L has one term less at each recursive call.

The second example below extracts all maximal non-decreasing sequences of
a list of numbers. Three variables are used, the first one res keeps track of all
non-decreasing sequences already obtained, the start variable is the starting
index of the current sub-sequence, and k is the loop index:

sage: def subSequences (L):
....: if L == []: return []
....: res = [] ; start = 0 ; k = 1



68 CHAP. 3. PROGRAMMING AND DATA STRUCTURES

....: while k < len(L): # 2 consecutive terms are defined

....: if L[k-1] > L[k]:

....: res.append (L[start:k]) ; start = k

....: k = k+1

....: res.append (L[start:k])

....: return res

sage: subSequences([1, 4, 1, 5])
[[1, 4], [1, 5]]
sage: subSequences([4, 1, 5, 1])
[[4], [1, 5], [1]]

The loop body deals with the kth element of the list. If the condition is fulfilled,
the current non-decreasing sub-sequence ends, and we start a new sub-sequence,
otherwise the current sub-sequence is extended by one term.

After the loop body, the append instruction adds to the final result the current
sub-sequence, which contains at least one element.

3.3.5 Character Strings
Character strings are delimited by single or double quotes, ’...’ or "...".
Strings delimited by single quotes may contain double quotes, and vice versa.
Strings can also be delimited by triple quotes ’’’...’’’: in that case they may
span several lines and contain single or double quotes.

sage: S = 'This is a character string.'

The escape character is the \ symbol, which allows to include end of lines by \n,
quotes by \" or \’, tabulations by \t, the backslash character by \\. Character
strings may contain characters with accents, and more generally any Unicode
character:

sage: S = 'This is a déjà-vu example.'; S
'This is a d\xc3\xa9j\xc3\xa0-vu example.'
sage: print(S)
This is a déjà-vu example.

The comparison of two character strings is performed according to the internal
encoding of each character. The length of a string is given by the len function,
and the concatenation of strings is performed by the addition and multiplication
symbols “+” and “*”.

Accessing sub-strings of S is done as for lists using square brackets S[n],
S[p:q], S[p:] and S[:q], the result being a character string. The language
forbids the replacement of an initial string by such an assignment, for this reason
character strings are immutable.

The str function converts its argument into a character string. The split
method cuts a given string at spaces:

sage: S='one two three four five six seven'; L=S.split(); L
['one', 'two', 'three', 'four', 'five', 'six', 'seven']
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The very extensive Python library re may also be used to search sub-strings,
words and regular expressions.

3.3.6 Shared or Duplicated Data Structures
A list in square brackets [...] can be modified by assigning some of its elements,
by a change of the number of elements, or by methods like sort or reverse.

Assigning a list to a variable does not duplicate the data structure, which
is shared. In the following example the lists L1 and L2 remain identical: they
correspond to two aliases of the same object, and modifying one of them is visible
on the other one:

sage: L1 = [11, 22, 33] ; L2 = L1
sage: L1[1] = 222 ; L2.sort() ; L1, L2
([11, 33, 222], [11, 33, 222])
sage: L1[2:3] = []; L2[0:0] = [6, 7, 8]
sage: L1, L2
([6, 7, 8, 11, 33], [6, 7, 8, 11, 33])

In contrast, the map, filter and flatten functions duplicate the data structures;
so do the list construction by L[p:q] or [..for..if..], and the concatenation
by + and *.

In the above example, replacing on the first line L2 = L1 by one of the next six
commands completely changes the following results, since modifications on one list
do not propagate to the other one. The two structures become independent, the
two lists are distinct even if they have the same value; for example the assignment
L2 = L1[:] copies the sub-list of L1 from the first to last term, and thus fully
duplicates the structure of L1:

L2 = [11, 22, 33] L2 = copy(L1) L2 = L1[:]
L2 = []+L1 L2 = L1+[] L2 = 1*L1

Checking for shared data structures can be done in Sage using the is binary
operator; if the answer is true, all modifications will have a side effect on both
variables:

sage: L1 = [11, 22, 33] ; L2 = L1 ; L3 = L1[:]
sage: [L1 is L2, L2 is L1, L1 is L3, L1 == L3]
[True, True, False, True]

Copy operations on lists operate on one level only. As a consequence, modifying
an element in a list of lists has a side effect despite the list copy at the outer
level:

sage: La = [1, 2, 3] ; L1 = [1, La] ; L2 = copy(L1)
sage: L1[1][0] = 5 # [1, [5, 2, 3]] for L1 and L2
sage: [L1 == L2, L1 is L2, L1[1] is L2[1]]
[True, False, True]

The following instruction duplicates a list on two levels:
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sage: map (copy, L)

whereas the deepcopy function recursively duplicates Python objects at all levels:
sage: La = [1, 2, 3] ; L1 = [1, La] ; L2 = deepcopy(L1)
sage: L1[1][0] = 5; [L1 == L2, L1 is L2, L1[1] is L2[1]]
[False, False, False]

The inverse lexicographic order is defined from the lexicographic order on
n-tuples by reversing the order on each element:

P = (p0, p1, . . . pn−1) ≺lexInv Q = (q0, q1, . . . qn−1)
⇐⇒ ∃r ∈ {0, . . . , n− 1}, (pr+1, . . . , pn−1) = (qr+1, . . . , qn−1) and pr > qr.

Programming this inverse lexicographic order might be done using the above-
defined alpha function, which implements the lexicographic order. We have to
copy the lists P and Q to perform the inversion without modifying the lists. More
precisely the lexInverse function reverts the n-tuples by reverse, and returns
the opposite of the Python integer corresponding to the wanted comparison:
−(P1 ≺lex Q1):

sage: def lexInverse (P, Q):
....: P1 = copy(P) ; P1.reverse()
....: Q1 = copy(Q) ; Q1.reverse()
....: return - alpha (P1, Q1)

The changes made on a list given as argument of a function are performed on
the original list, since the functions do not copy arguments which are lists. Thus
a function that would perform P.reverse(), in place of P1 = copy(P) and
P1.reverse(), would modify definitively the list P ; this side effect is usually not
wanted.

The variable P is a local variable of the function, independent from any other
global variable also called P , but this has nothing to do with modifications made
to a list given as argument of the function.

The lists in Python and Sage are implemented as dynamic tables, contrary
to Lisp and OCaml where lists are defined by a head t and a tail list Q. The
Lisp command cons(t,Q) returns a list with head t without modifying the list Q,
whereas in Python, adding an element e to a dynamic table T via T.append(e)
modifies the table T . Both representations have advantages and drawbacks, and
switching from one to the other is possible, however the efficiency of a given
algorithm might greatly vary from one representation to the other.

3.3.7 Mutable and Immutable Data Structures
Lists enable us to construct and manipulate elements that can be modified: they
are called mutable data structures.

Python also allows to define immutable objects. The immutable data structure
corresponding to lists is called sequence or tuple, and is denoted with parentheses
(...) instead of square brackets [...]. A tuple with only one element is defined
by adding a comma after this element, to distinguish it from mathematical
parentheses.
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sage: S0 = (); S1 = (1, ); S2 = (1, 2)
sage: [1 in S1, 1 == (1)]
[True, True]

The operations on tuples are essentially the same as those on lists, for example
map constructs the image of a tuple by a function, filter extracts a sub-sequence.
In all cases the result is a list, and the for comprehension transforms a tuple in
list:

sage: S1 = (1, 4, 9, 16, 25); [k for k in S1]
[1, 4, 9, 16, 25]

The zip command groups several lists or tuples term-by-term, and is equivalent
to the following map command:

sage: L1 = [0..4]; L2 = [5..9]
sage: zip(L1, L2)
[(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]
sage: map(lambda x, y:(x, y), L1, L2)
[(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]

3.3.8 Finite Sets
Contrary to lists, the set data structure only keeps track of whether an element
is present or absent, without considering its position or number of repetitions.
Sage constructs finite sets via the Set function, applied to the list of its elements.
The result is output with curly brackets:

sage: E = Set([1, 2, 4, 8, 2, 2, 2]); F = Set([7, 5, 3, 1]); E, F
({8, 1, 2, 4}, {1, 3, 5, 7})

The operator in checks whether a set contains a given element, and Sage allows
the union of sets by + or |, the intersection by &, the set difference by -, and the
symmetric difference using ˆˆ:

sage: E = Set([1, 2, 4, 8, 2, 2, 2]); F = Set([7, 5, 3, 1])
sage: 5 in E, 5 in F, E + F == F | E
(False, True, True)
sage: E & F, E - F, E ^^ F
({1}, {8, 2, 4}, {2, 3, 4, 5, 7, 8})

The len(E) command gives the cardinality of such a finite set. The operations
map, filter and for..if... apply to sets as well as tuples, and yield lists
as results. Accessing a given element is done via E[k]. The commands below
construct in two different ways the list of elements of a set:

sage: E = Set([1, 2, 4, 8, 2, 2, 2])
sage: [E[k] for k in [0..len(E)-1]], [t for t in E]
([8, 1, 2, 4], [8, 1, 2, 4])

The following function checks whether E is a subset of F , using the union
operator:
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sage: def included (E, F): return E+F == F

Contrary to lists, sets are immutable, and thus cannot be modified; their
elements must also be immutable. Sets of tuples or sets of sets are thus possible,
but not sets of lists:

sage: Set([Set([]), Set([1]), Set([2]), Set([1, 2])])
{{1, 2}, {}, {2}, {1}}
sage: Set([ (), (1, ), (2, ), (1, 2) ])
{(1, 2), (2,), (), (1,)}

The following function scans all subsets of a set recursively:

sage: def Parts (EE):
....: if EE == Set([]): return Set([EE])
....: else:
....: return withOrWithout (EE[0], Parts(Set(EE[1:])))

sage: def withOrWithout (a, E):
....: return Set (map (lambda F: Set([a])+F, E)) + E

sage: Parts(Set([1, 2, 3]))
{{3}, {1, 2}, {}, {2, 3}, {1}, {1, 3}, {1, 2, 3}, {2}}

The withOrWithout(a, E) function call takes a set E of subsets, and constructs
the set twice as large made from those subsets, and those subsets added (in the
set union sense) with a. The recursive construction starts with a set with one
element E = {∅}.

3.3.9 Dictionaries
Last but not least, Python, and thus Sage, provides the notion of dictionary. Like
a phone book, a dictionary associates a value to a given key.

The keys of a dictionary might be of any immutable type: numbers, characters
strings, tuples, etc. The syntax is like lists, using assignments from the empty
dictionary dict() which can be written {} too:

sage: D={}; D['one']=1; D['two']=2; D['three']=3; D['ten']=10
sage: D['two'] + D['three']
5

The above example shows how to add an entry (key,value) to a dictionary, and
how to access the value associated to a given key via D[...].

The operator in checks whether a key is in a dictionary, and the commands
del D[x] or D.pop(x) erase the entry of key x in this dictionary.

The following example demonstrates how a dictionary can be used to represent
a function on a finite set:

E = {a0, a1, a2, a3, a4, a5}, f(a0) = b0, f(a1) = b1, f(a2) = b2,
f(a3) = b0, f(a4) = b3, f(a5) = b3.
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Methods on dictionaries are comparable to those on other enumerated data
structures. The program below implements the above function, and gives the
input set E and the output set Im f = f(E) via the methods keys and values:

sage: D = {'a0':'b0', 'a1':'b1', 'a2':'b2', 'a3':'b0',\
....: 'a4':'b3', 'a5':'b3'}
sage: E = Set(D.keys()) ; Imf = Set(D.values())
sage: Imf == Set(map (lambda t:D[t], E)) # is equivalent
True

This last command directly translates the mathematical definition Im f =
{f(x)|x ∈ E}. Dictionaries may also be constructed from lists or pairs [key,
value] via the following command:

dict([’a0’, ’b0’], [’a1’, ’b1’], ...)

The two following commands, applied to the keys or to the dictionary itself
are, by construction, equivalent to D.values():

map (lambda t:D[t], D) map (lambda t:D[t], D.keys())

The following test on the number of distinct values determines if the function
represented by D is injective, len(D) being the number of dictionary entries:

sage: def injective(D):
....: return len(D) == len (Set(D.values()))

The first two commands below build the image f(F ) and the preimage f−1(G)
of subsets F and G of a function defined by the dictionary D; the last one
constructs the dictionary DR corresponding to the inverse function f−1 of f ,
assumed to be bijective:

sage: Set([D[t] for t in F])
sage: Set([t for t in D if D[t] in G])
sage: DR = dict((D[t], t) for t in D)
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4
Graphics

Drawing a function of one or two variables, or a series of data, makes it easier to
grasp a mathematical or physical phenomenon, and helps us make conjectures.
In this chapter, we illustrate the graphical capabilities of Sage using several
examples.

4.1 2D Graphics
Several definitions of a plane curve are possible: as the graph of a function, from
a parametric system, using polar coordinates, or by an implicit equation. We
detail these four cases, and give some examples of data visualisation.

4.1.1 Graphical Representation of a Function
To draw the graph of a symbolic or Python function on an interval [a, b], we use
plot(f(x), a, b) or the alternative syntax plot(f(x), x, a, b).

sage: plot(x * sin(1/x), x, -2, 2, plot_points=500)

Among the numerous options of the plot command, we mention the following:

• plot_points (default value 200): minimal number of computed points;

• xmin and xmax: interval bounds over which the function is displayed;

• color: colour of the graph, either a RGB triple, a character string such as
’blue’, or an HTML colour like ’#aaff0b’;

• detect_poles (default value False): enables to draw a vertical asymptote
at poles of the function;
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Figure 4.1 – Graph of x 7→ x sin 1
x
.

• alpha: line transparency;

• thickness: line thickness;

• linestyle: style of the line, either dotted with ’:’, dash-dotted with ’-.’,
or solid with the default value ’-’.

To visualise the graph, we assign the graphical object to a variable, say g,
then we use the show command; in addition we can give bounds for the y-axis
(g.show(ymin=-1, ymax=3)) or choose the aspect ratio (g.show(aspect_ratio=1)
to have equal scales for x and y).

The graph obtained may be exported using the save command into sev-
eral formats defined by the suffixes .pdf, .png, .ps, .eps, .svg and .sobj:

g.save(name, aspect_ratio=1, xmin=-1, xmax=3, ymin=-1, ymax=3)

To include such a figure in a LATEX document using the includegraphics
command, one should use the eps suffix (encapsulated PostScript) if the document
is to be compiled with latex, and the pdf suffix (to be preferred to png, to obtain
a better resolution) if the document is to be compiled with pdflatex.

Let us draw on the same graphics the sine function and its first Taylor
polynomials at 0.

sage: def p(x, n):
....: return(taylor(sin(x), x, 0, n))
sage: xmax = 15 ; n = 15
sage: g = plot(sin(x), x, -xmax, xmax)
sage: for d in range(n):
....: g += plot(p(x, 2 * d + 1), x, -xmax, xmax,\
....: color=(1.7*d/(2*n), 1.5*d/(2*n), 1-3*d/(4*n)))
sage: g.show(ymin=-2, ymax=2)

We can also create an animation, to see how the Taylor polynomials approximate
better and better the sine function when their degree increases. To keep the
animation, it suffices to save it in the gif format.
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Figure 4.2 – Some Taylor polynomials of the sine function at 0.

sage: a = animate([[sin(x), taylor(sin(x), x, 0, 2*k+1)]\
....: for k in range(0, 14)], xmin=-14, xmax=14,\
....: ymin=-3, ymax=3, figsize=[8, 4])
sage: a.show(); a.save('path/animation.gif')

Let us return to the plot function to demonstrate, as an example, the Gibbs
phenomenon. We draw the partial sum of order 20 of the square wave function.

sage: f2(x) = 1; f1(x) = -1
sage: f = piecewise([[(-pi,0),f1],[(0,pi),f2]])
sage: S = f.fourier_series_partial_sum(20,pi)
sage: g = plot(S, x, -8, 8, color='blue')
sage: saw(x) = x - 2 * pi * floor((x + pi) / (2 * pi))
sage: g += plot(saw(x) / abs(saw(x)), x, -8, 8, color='red')
sage: g
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Figure 4.3 – Fourier series expansion of the square wave function.

In the code above, f is a piecewise function on [−π;π], defined with the piecewise
instruction. To extend f by 2π-periodicity, the simplest solution is to give an
expression valid for any real number, such as saw(x)/abs(saw(x)). The sum of
the 20 first terms of the Fourier series is:

S = 4
π

(
sin(x) + sin(3x)

3 + sin(5x)
5 + · · ·+ sin(19π)

19

)
.
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4.1.2 Parametric Curve
Parametric curves (x = f(t), y = g(t)) may be visualised using the command
parametric_plot((f(t), g(t)), (t, a, b)), where [a, b] is the interval over
which the parameter t ranges.

Let us show the parametric curve defined by the equations:
x(t) = cos(t) + 1

2 cos(7t) + 1
3 sin(17t),

y(t) = sin(t) + 1
2 sin(7t) + 1

3 cos(17t).

sage: t = var('t')
sage: x = cos(t) + cos(7*t)/2 + sin(17*t)/3
sage: y = sin(t) + sin(7*t)/2 + cos(17*t)/3
sage: g = parametric_plot((x, y), (t, 0, 2*pi))
sage: g.show(aspect_ratio=1)
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Figure 4.4 – Parametric curve of equation x(t) = cos(t) + 1
2 cos(7t) + 1

3 sin(17t), y(t) =
sin(t) + 1

2 sin(7t) + 1
3 cos(17t).

4.1.3 Curve in Polar Coordinates
Curves in polar coordinates ρ = f(θ), where the parameter θ spans the interval
[a, b], may be drawn by the command polar_plot(rho(theta),(theta,a,b)).

For example, let us see graphically the rose-curves with polar equation ρ(θ) =
1 + e · cosnθ when n = 20/19 and e ∈ {2, 1/3}.

sage: t = var('t'); n = 20/19
sage: g1 = polar_plot(1+2*cos(n*t),(t,0,n*36*pi),plot_points=5000)
sage: g2 = polar_plot(1+1/3*cos(n*t),(t,0,n*36*pi),plot_points=5000)
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Figure 4.5 – Rose-curves of equation ρ(θ) = 1 + e · cosnθ.

sage: g1.show(aspect_ratio=1); g2.show(aspect_ratio=1)

Exercise 12. Draw the family of Pascal conchoids of polar equation ρ(θ) = a+cos θ
when the parameter a varies from 0 to 2 by steps of 0.1.

4.1.4 Curve Defined by an Implicit Equation
To draw a curve given by an implicit equation, you need to call the function
implicit_plot(f(x, y), (x, a, b), (y, c, d)); however, the complex_plot
command may also be used, which enables us to draw in colour the level set of
a two-variable function. Let us draw the curve given by the implicit equation
C =

{
z ∈ C ,

cos(z4)
 = 1

}
.

sage: z = var('z')
sage: g1 = complex_plot(abs(cos(z^4))-1,
....: (-3,3), (-3,3), plot_points=400)
sage: f = lambda x, y : (abs(cos((x + I * y) ** 4)) - 1)
sage: g2 = implicit_plot(f, (-3, 3), (-3, 3), plot_points=400)
sage: g1.show(aspect_ratio=1); g2.show(aspect_ratio=1)

4.1.5 Data Plot
To construct a bar graph, two distinct functions are available. On the one hand,
bar_chart takes as input an integer list and draws vertical bars whose height is
given by the list elements (in the given order). The width option enables us to
choose the bar width.

sage: bar_chart([randrange(15) for i in range(20)])
sage: bar_chart([x^2 for x in range(1,20)], width=0.2)

On the other hand, to draw the histogram of a random variable from a list of
floating-point numbers, we use the plot_histogram function. The list values are
first sorted and grouped into intervals (the number of intervals is given by the
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Figure 4.6 – Curve g2 defined by the equation
cos(z4)

 = 1.
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Figure 4.7 – Bar graphs.

option bins whose default value is 50), the height of each bar being proportional
to the number of corresponding values.

sage: liste = [10 + floor(10*sin(i)) for i in range(100)]
sage: bar_chart(liste)
sage: finance.TimeSeries(liste).plot_histogram(bins=20)
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(b) Plot with plot_histogram.

It often arises that the list of data values we want to study is stored in a
spreadsheet format. The Python csv package enables us to import such data
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stored in the csv format. For example, let us assume that we want to plot the
histogram of grades of a school class, which are in column 3 of the file exam01.csv.
To extract the grades from this column, we will use the following instructions (in
general, the first lines of such a file contain text, therefore we deal with potential
non-matching lines with the try keyword):

sage: import csv
sage: reader = csv.reader(open("exam01.csv"))
sage: grades = []; list = []
sage: for line in reader:
....: grades.append(line[2])
....: for i in grades:
....: try:
....: f = float(i)
....: except ValueError:
....: pass
....: else:
....: list.append(f)
sage: finance.TimeSeries(list).plot_histogram(bins=20)
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To draw a list of linked points (resp. non-linked), we use the line(p)
(resp. point(p) or points(p)) command, p being a list of 2-element lists (or
tuples) giving abscissa and ordinate of the points.

Example. (Random walk) Starting from the origin O, a particle moves a
distance ` every t seconds, in a random direction, independently of the preceding
moves. Let us draw an example of particle trajectory. The red line goes from the
initial to the final position.

sage: n, l, x, y = 10000, 1, 0, 0; p = [[0, 0]]
sage: for k in range(n):
....: theta = (2 * pi * random()).n(digits=5)
....: x, y = x + l * cos(theta), y + l * sin(theta)
....: p.append([x, y])
sage: g1 = line([p[n], [0, 0]], color='red', thickness=2)
sage: g1 += line(p, thickness=.4); g1.show(aspect_ratio=1)

Example. (Uniformly distributed sequences) Given a real sequence (un)n∈N∗ ,
we construct the polygonal line whose successive vertices are the points in the
complex plane

zN =
∑
n≤N

e2iπun .

If the sequence is uniformly distributed modulo 1, the polygonal line should
behave like a random walk, and thus not go too far from the origin. Hence we
can conjecture the uniform distribution modulo 1 from the graphical aspect of
the polygonal line. Let us study the following cases:

• un = n
√

2 and N = 200,

• un = n ln(n)
√

2 and N = 10000,
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Figure 4.8 – Random walk.

• un = bn ln(n)c
√

2 and N = 10000,

• un = pn
√

2 and N = 10000 (here pn is the n-th prime).

Figure 4.9 is obtained as follows (here for un = n
√

2):

sage: length = 200; n = var('n')
sage: u = lambda n: n * sqrt(2)
sage: z = lambda n: exp(2 * I * pi * u(n)).n()
sage: vertices = [CC(0, 0)]
sage: for n in range(1, length):
....: vertices.append(vertices[n - 1] + CC(z(n)))
sage: line(vertices).show(aspect_ratio=1)

We see that the curve 4.9a is amazingly regular, which suggests that the
uniform distribution of n

√
2 modulo 1 is deterministic. In the case of un =

n ln(n)
√

2, the values apparently seem random modulo 1. However, the associated
curve 4.9b is remarkably well structured. The curve 4.9c has the same kind
of structure as the second one. Finally, the curve 4.9d shows the completely
different nature of primes modulo 1/

√
2: the spirals have disappeared and the

aspect looks very similar to a random walk un (Figure 4.8). It thus looks as
though “prime numbers make use of all the randomness they are given...”

For a detailed interpretation of these curves, we refer the reader to the book
(in French) Les nombres premiers of Gérald Tenenbaum and Michel Mendès
France [TMF00].

Exercise 13 (Drawing terms of a recurrent sequence). We consider the sequence
(un)n∈N defined by: {u0 = a,

∀n ∈ N, un+1 =
u2

n − 1
4

.
Represent graphically the behaviour of the sequence by constructing a list of points[

[u0, 0], [u0, u1], [u1, u1], [u1, u2], [u2, u2], . . .
]
, with a ∈ {−0.4, 1.1, 1.3}.

4.1.6 Displaying Solutions of Differential Equations
We can combine the above commands to represent solutions of differential equa-
tions or systems. To solve symbolically an ordinary differential equation, one calls
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Figure 4.9 – Uniformly distributed sequences.
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the desolve function, which is studied in more detail in Chapter 10. To solve
a differential equation numerically, Sage provides several tools: desolve_rk4
(which uses the same syntax as desolve, and which is enough to solve differential
equations at undergraduate level), odeint (which calls the SciPy package), and
finally ode_solver (which calls the GSL library, and whose use is detailed in
Section 14.2). The functions desolve_rk4 and odeint return a list of points,
which is easy to draw using the line command; we will use them in this section
to draw numerical solutions.

Example. (First-order linear differential equation) Let us draw the integral
curves of the differential equation xy′ − 2y = x3.

sage: x = var('x'); y = function('y')
sage: DE = x*diff(y(x), x) == 2*y(x) + x^3
sage: desolve(DE, [y(x),x])
(_C + x)*x^2
sage: sol = []
sage: for i in srange(-2, 2, 0.2):
....: sol.append(desolve(DE, [y(x), x], ics=[1, i]))
....: sol.append(desolve(DE, [y(x), x], ics=[-1, i]))
sage: g = plot(sol, x, -2, 2)
sage: y = var('y')
sage: g += plot_vector_field((x, 2*y+x^3), (x,-2,2), (y,-1,1))
sage: g.show(ymin=-1, ymax=1)

To decrease the computation time, it would be better here to define “by hand”
the general solution of the equation, and to create a list of particular solutions (as
done in the solution of Exercise 14), instead of solving the differential equation
several times with different initial conditions. We could also compute a numerical
solution of this equation (with the desolve_rk4 function) to draw its integral
curves:

sage: x = var('x'); y = function('y')
sage: DE = x*diff(y(x), x) == 2*y(x) + x^3
sage: g = Graphics() # creates an empty graph
sage: for i in srange(-2, 2, 0.2):
....: g += line(desolve_rk4(DE, y(x), ics=[1, i],\
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(b) Numerical solution.

Figure 4.10 – Integral curves of xy′ − 2y = x3.



4.1. 2D GRAPHICS 85

-4 -2 2 4

-2

2

4

6

8

10

Figure 4.11 – Integral curves of y′(t) + cos(y(t) · t) = 0.

....: step=0.05, end_points=[0,2]))

....: g += line(desolve_rk4(DE, y(x), ics=[-1, i],\

....: step=0.05, end_points=[-2,0]))
sage: y = var('y')
sage: g += plot_vector_field((x, 2*y+x^3), (x,-2,2), (y,-1,1))
sage: g.show(ymin=-1, ymax=1)

As seen in the above example, the desolve_rk4 function takes as input a
differential equation (or the right-hand side f of the equation in explicit form
y′ = f(y, x)), the name of the unknown function, the initial conditions, the step
and interval where a solution is sought. The optional argument output enables
us to specify the type of output: the default value ’list’ returns a list (which is
useful if we want to combine graphics as in our example), ’plot’ outputs the
graph of the solution, and ’slope_field’ adds the graphs of slopes of integral
curves.

Exercise 14. Draw the integral curves of the equation x2y′− y = 0, for −3 ≤ x ≤ 3
and −5 ≤ y ≤ 5.

Let us now give an example of the odeint function from the SciPy package.
Example. (First-order non-linear differential equation) Let us draw the

integral curves of the equation y′(t) + cos(y(t) · t) = 0.

sage: import scipy; from scipy import integrate
sage: f = lambda y, t: - cos(y * t)
sage: t = srange(0, 5, 0.1); p = Graphics()
sage: for k in srange(0, 10, 0.15):
....: y = integrate.odeint(f, k, t)
....: p += line(zip(t, flatten(y)))
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sage: t = srange(0, -5, -0.1); q = Graphics()
sage: for k in srange(0, 10, 0.15):
....: y = integrate.odeint(f, k, t)
....: q += line(zip(t, flatten(y)))
sage: y = var('y')
sage: v = plot_vector_field((1, -cos(x*y)), (x,-5,5), (y,-2,11))
sage: g = p + q + v; g.show()

The odeint function takes as argument the right-hand side f of the differential
equation y′ = f (assumed to be in explicit form), one or more initial condi-
tions, and the interval where a solution is sought; it returns an array of type
numpy.ndarray that one converts using the flatten command1 already seen
in §3.3.2. The obtained list is then combined with the array t using the zip
command, and the approximate solution is displayed. To add the vector fields
tangent to the integral curves, we have used the plot_vector_field command.

Example. (Lotka-Volterra predator-prey model) We wish to represent graph-
ically the variation of a set of prey and predators evolving according to a system
of Lotka-Volterra equations: 

du

dt
= au− buv,

dv

dt
= −cv + dbuv,

where u is the number of preys (for example rabbits), v is the number of predators
(for example foxes). In addition, the parameters a, b, c, d describe the evolution
of the populations: a is the natural growth of rabbits without foxes to eat them,
b is the decrease of rabbits when foxes kill them, c is the decrease of foxes without
any rabbit to eat, and finally d indicates how many rabbits are needed for a new
fox to appear.

sage: import scipy; from scipy import integrate
sage: a, b, c, d = 1., 0.1, 1.5, 0.75
sage: def dX_dt(X, t=0): # returns the population variation
....: return [a*X[0] - b*X[0]*X[1], -c*X[1] + d*b*X[0]*X[1]]
sage: t = srange(0, 15, .01) # time scale
sage: X0 = [10, 5] # initial conditions: 10 rabbits and 5 foxes
sage: X = integrate.odeint(dX_dt, X0, t) # numerical solution
sage: rabbits, foxes = X.T # shortcut for X.transpose()
sage: p = line(zip(t, rabbits), color='red') # number of rabbits graph
sage: p += text("Rabbits",(12,37), fontsize=10, color='red')
sage: p += line(zip(t, foxes), color='blue') # idem for foxes
sage: p += text("Foxes",(12,7), fontsize=10, color='blue')
sage: p.axes_labels(["time", "population"]); p.show(gridlines=True)

The instructions above show the evolution of the number of rabbits and foxes with
time (Figure 4.12, left), and those below the vector field (Figure 4.12, right):

1We could also use the NumPy ravel function, which avoids creating a new object, and thus
optimises the memory usage.
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sage: n = 11; L = srange(6, 18, 12 / n); R = srange(3, 9, 6 / n)
sage: CI = zip(L, R) # list of initial conditions
sage: def g(x,y):
....: v = vector(dX_dt([x, y])) # for a nicer graph, we
....: return v/v.norm() # normalise the vector field
sage: x, y = var('x, y')
sage: q = plot_vector_field(g(x, y), (x, 0, 60), (y, 0, 36))
sage: for j in range(n):
....: X = integrate.odeint(dX_dt, CI[j], t) # resolution
....: q += line(X, color=hue(.8-float(j)/(1.8*n))) # graph plot
sage: q.axes_labels(["rabbits","foxes"]); q.show()
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Figure 4.12 – Study of a predator-prey system.

Exercise 15 (Predator-prey model). Recreate the left-hand graph of Figure 4.12
using desolve_system_rk4 instead of odeint.

Exercise 16 (An autonomous differential system). Draw the integral curves of the
following differential system: {

ẋ = y,
ẏ = 0.5y − x− y3.

Exercise 17 (Flow around a cylinder with Magnus effect). We combine a simple flow
around a cylinder of radius a to a vortex of parameter α, which modifies the orthoradial
velocity component. We work in a coordinate system centered on the cylinder, with
cylindrical coordinates in the plane z = 0, i.e., in polar coordinates. The velocity
components are then:

vr = v0 cos(θ)
(

1− a2

r2

)
and vθ = −v0 sin(θ)

(
1 + a2

r2

)
+ 2αav0

r
.

The flow lines (which are identical to trajectories, since the flow is stationary) are parallel
to the velocity. We search a parametric expression of the flow lines; we have thus to
solve the differential system:

dr

dt
= vr and dθ

dt
= vθ

r
.

By using coordinates scaled by the radius a of the cylinder, we may assume a = 1. Draw
the flow lines for α ∈ {0.1, 0.5, 1, 1.25}.
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The Magnus effect was proposed to build propulsion systems made from large vertical
rotating cylinders able to produce a longitudinal thrust when the wind is perpendicular
to the ship (this was the case of the Baden-Baden rotor ship built by Anton Flettner,
which crossed the Atlantic in 1926).

4.1.7 Evolute of a Curve
We now give an example of drawing the evolute of a parametric arc (let us recall
that the evolute is the envelope of the normals of a curve, or equivalently, the
locus of centres of curvature).

Example. (Evolute of the parabola) Let us find the equation of the evolute of
the parabola P of equation y = x2/4, and show on the same graph the parabola P ,
some normals to P and its evolute.

To determine a system of parametric equations (x(t), y(t)) of the evolute of a
family of lines ∆t defined by cartesian equations of the form α(t)X+β(t)Y = γ(t),
we express the fact that the line ∆t is tangent to the envelope at (x(t), y(t)):

α(t)x(t) + β(t)y(t) = γ(t), (4.1)
α(t)x′(t) + β(t)y′(t) = 0. (4.2)

The derivative of Equation (4.1), combined with (4.2), yields the system:

α(t) x(t) + β(t) y(t) = γ(t), (4.1)
α′(t)x(t) + β′(t)y(t) = γ′(t). (4.3)

In our case, the normal (Nt) to the parabola P in M(t, t2/4) has normal vector
−→v = (1, t/2) (which is tangent to the parabola); it thus has for equation:(

x− t
y − t2/4

)
·
(

1
t/2

)
= 0 ⇐⇒ x+ t

2y = t+ t3

8 ,

in other words, (α(t), β(t), γ(t)) = (1, t/2, t + t3/8). We can then solve the
preceding system with the solve function:

sage: x, y, t = var('x, y, t')
sage: alpha(t) = 1; beta(t) = t / 2; gamma(t) = t + t^3 / 8
sage: env = solve([alpha(t) * x + beta(t) * y == gamma(t),\
....: diff(alpha(t), t) * x + diff(beta(t), t) * y == \
....: diff(gamma(t), t)], [x,y])[[

x = −1
4 t

3, y = 3
4 t

2 + 2
]]

This gives a parametric representation of the normal envelope:{
x(t) = − 1

4 t
3,

y(t) = 2 + 3
4 t

2.

We can then answer the given question, by drawing some normals to the parabola
(more precisely, we draw line segment [M,M + 18−→n ] where M(u, u2/4) is a point
on P and −→n = (−u/2, 1) a normal vector to P):
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sage: f(x) = x^2 / 4
sage: p = plot(f, -8, 8, rgbcolor=(0.2,0.2,0.4)) # the parabola
sage: for u in srange(0, 8, 0.1): # normals to the parabola
....: p += line([[u, f(u)], [-8*u, f(u) + 18]], thickness=.3)
....: p += line([[-u, f(u)], [8*u, f(u) + 18]], thickness=.3)
sage: p += parametric_plot((env[0][0].rhs(),env[0][1].rhs()),\
....: (t, -8, 8),color='red') # draws the evolute
sage: p.show(xmin=-8, xmax=8, ymin=-1, ymax=12, aspect_ratio=1)
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Figure 4.13 – The parabola evolute.

As recalled above, the evolute of a curve is also the locus of its centres of curvature.
Using the circle function, let us draw some osculating circles of the parabola.
The centre of curvature Ω at a pointMt = (x(t), y(t)) of the curve has coordinates:

xΩ = x+−y′ x′2 + y′2

x′y′′ − x′′y′
, and yΩ = y + x′

x′2 + y′2

x′y′′ − x′′y′
,

and the radius of curvature2 at Mt is:

R = (x′2 + y′2) 3
2

x′y′′ − x′′y′
.

sage: t = var('t'); p = 2
sage: x(t) = t; y(t) = t^2 / (2 * p); f(t) = [x(t), y(t)]
sage: df(t) = [x(t).diff(t), y(t).diff(t)]
sage: d2f(t) = [x(t).diff(t, 2), y(t).diff(t, 2)]

2We consider here the algebraic radius of curvature, which can be negative.
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Type of drawing

Graph of a function plot
Parametric curve parametric_plot

Curve defined by a polar equation polar_plot
Curve defined by an implicit equation implicit_plot

Level set of a complex function complex_plot
Empty graphical object Graphics()

Integral curves of a differential equation odeint, desolve_rk4
Bar graph, bar chart bar_chart

Histogram of a statistical sequence plot_histogram
Polygonal chain line
Cloud of points points

Circle circle
Polygon polygon

Text text

Table 4.1 – Summary of 2D graphical functions.

sage: T(t) = [df(t)[0] / df(t).norm(), df[1](t) / df(t).norm()]
sage: N(t) = [-df(t)[1] / df(t).norm(), df[0](t) / df(t).norm()]
sage: R(t) = (df(t).norm())^3 / (df(t)[0]*d2f(t)[1]-df(t)[1]*d2f(t)[0])
sage: Omega(t) = [f(t)[0] + R(t)*N(t)[0], f(t)[1] + R(t)*N(t)[1]]
sage: g = parametric_plot(f(t), (t,-8,8), color='green',thickness=2)
sage: for u in srange(.4, 4, .2):
....: g += line([f(t=u), Omega(t=u)], color='red', alpha = .5)
....: g += circle(Omega(t=u), R(t=u), color='blue')
sage: g.show(aspect_ratio=1,xmin=-12,xmax=7,ymin=-3,ymax=12)
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Figure 4.14 – Osculating circles of the parabola.
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Table 4.1 gives a summary of the functions detailed in this section. It also
contains the text command which enables us to add a character string in a graph,
and the polygon command to plot polygons.

4.2 3D Curves
Sage provides the plot3d(f(x,y),(x,a,b),(y,c,d)) command to display sur-
faces in 3-dimensions. The surface obtained may then be visualised via the Jmol
application; the Tachyon 3D Ray Tracer or three.js can be used alternatively
with the option viewer=’tachyon’ or viewer=’threejs’ of the show command.
Here is a first example of parametric surface (Figure 4.15):

sage: u, v = var('u, v')
sage: h = lambda u,v: u^2 + 2*v^2
sage: plot3d(h, (u,-1,1), (v,-1,1), aspect_ratio=[1,1,1])

Figure 4.15 – The parametric surface (u, v) 7→ u2 + 2v2.

Displaying the surface corresponding to a 2-variable function helps us to study
that function, as will be seen in the following example.

Example. (A discontinuous function whose directional derivatives exist ev-
erywhere!) Study the existence in (0, 0) of the directional derivatives and the
continuity of the function f from R2 to R defined by:

f(x, y) =
{

x2y
x4+y2 if (x, y) 6= (0, 0),
0 if (x, y) = (0, 0).

For H =
(

cos θ
sin θ

)
, the function ϕ(t) = f(tH) = f(t cos θ, t sin θ) is differentiable in

t = 0 for any value of θ; indeed,

sage: f(x, y) = x^2 * y / (x^4 + y^2)
sage: t, theta = var('t, theta')
sage: limit(f(t * cos(theta), t * sin(theta)) / t, t=0)
cos(theta)^2/sin(theta)
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Hence f has well-defined directional derivatives in any direction at the point (0, 0).
To better visualise the surface corresponding to f , we can first look for some level
sets; for example the level set of value 1

2 :

sage: solve(f(x,y) == 1/2, y)
[y == x^2]
sage: a = var('a'); h = f(x, a*x^2).simplify_rational(); h
a/(a^2 + 1)

Along the parabola of equation y = ax2, except at the origin, f has thus a
constant value f(x, ax2) = a

1+a2 . We then display the function h : a 7−→ a
1+a2 :

sage: plot(h, a, -4, 4)
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Figure 4.16 – A vertical cut of the surface under study.

The function h has its maximum at a = 1 and its minimum at a = −1. The
restriction of f to the parabola of equation y = x2 corresponds to the level set
at “height” 1

2 ; conversely, the restriction to the parabola of equation y = −x2

corresponds to the bottom of the “thalweg” at height − 1
2 . In conclusion, arbitrarily

close to the point (0, 0), we can find points where f takes as value 1
2 , or respectively

− 1
2 . As a consequence, f is not continuous at the origin.

sage: p = plot3d(f(x,y),(x,-2,2),(y,-2,2),plot_points=[150,150])

We might also draw horizontal planes to display the level sets of this function
with:

sage: for i in range(1,4):
....: p += plot3d(-0.5 + i / 4, (x, -2, 2), (y, -2, 2),\
....: color=hue(i / 10), opacity=.1)

Among the other 3D graphical commands, implicit_plot3d allows us to
display surfaces defined by an implicit equation of the form f(x, y, z) = 0. Let
us display for example the Cassini surface (Figure 4.18a) defined by the implicit
equation:

(
a2 + x2 + y2)2 = 4 a2x2 + z4.

sage: x, y, z = var('x, y, z'); a = 1
sage: h = lambda x, y, z:(a^2 + x^2 + y^2)^2 - 4*a^2*x^2-z^4
sage: implicit_plot3d(h, (x,-3,3), (y,-3,3), (z,-2,2),\
....: plot_points=100)
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Figure 4.17 – The surface corresponding to f : (x, y) 7→ x2y
x4+y2 .

Finally, let us give an example of 3-dimensional curve (Figure 4.18b) with the
line3d command:

sage: line3d([(-10*cos(t)-2*cos(5*t)+15*sin(2*t),\
....: -15*cos(2*t)+10*sin(t)-2*sin(5*t),\
....: 10*cos(3*t)) for t in srange(0,6.4,.1)],radius=.5)

(a) The Cassini surface. (b) A knot in space.

Figure 4.18 – Surface and curve in 3D.
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5
Computational Domains

Writing mathematics on paper or on the blackboard requires a compromise
between ease of notations and rigour. The same holds for the day-to-day use of a
computer algebra system. Sage tries to give this choice to the user, by letting
her/him specify, more or less rigorously, the computational domains: what is the
nature of the considered objects, in which sets do they live, which operations can
be applied to them?

5.1 Sage is Object-Oriented
Python and Sage use heavily the object-oriented programming paradigm. Even
though this remains relatively transparent in common use, it is useful to know a
little about this paradigm, which is quite natural in a mathematical context.

5.1.1 Objects, Classes and Methods
The object-oriented programming paradigm consists in modelling each physical or
abstract entity one wishes to manipulate by a programming language construction
called an object. In most cases, as in Python, each object is an instance of a class.
For example, the rational number 12/35 is represented by an object which is an
instance of the Rational class:

sage: o = 12/35
sage: type(o)
<type 'sage.rings.rational.Rational'>

Note that this class is really associated to the object 12/35, and not to the variable
o in which it is stored:
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sage: type(12/35)
<type 'sage.rings.rational.Rational'>

Let us be more precise. An object is a part of the computer memory which
stores the required information to represent the corresponding entity. The class
in turn defines two things:

1. the data structure of an object, i.e., how the information is organised in
memory. For example, the Rational class specifies that a rational number
like 12/35 is represented by two integers: its numerator and its denominator;

2. its behaviour, in particular the available operations on this object: how to
obtain the numerator of a rational number, how to compute its absolute
value, how to multiply or add two rational numbers. Each of these opera-
tions is implemented by a method (here respectively numer, abs, __mul__,
__add__).

To factor an integer, we will thus call the factor method with the following
syntax:

sage: o = 720
sage: o.factor()
2^4 * 3^2 * 5

which we can read as follows: “take the value of o and apply to it the factor
method, without any other argument”. Under the hood, Python performs the
following computation:

sage: type(o).factor(o)
2^4 * 3^2 * 5

From left to right: “request from the class of o (type(o)) the factorisation method
(type(o).factor), and apply it to o”.

Please note that we can apply this method not only to a variable, but also
directly to a value:

sage: 720.factor()
2^4 * 3^2 * 5

and thus we can chain the operations, from left to right. Here, we first take the
numerator of a rational number, then we factor this numerator:

sage: o = 720 / 133
sage: o.numerator().factor()
2^4 * 3^2 * 5

To make the user’s life easier, Sage also provides a function factor, so that
factor(o) is a shortcut for o.factor(). It is the case for several common
functions, and it is possible to add our own shortcuts, as illustrated in the
following exercise.

Exercise 18. Build a shortcut ndigits so that ndigits(o) calls the ndigits
method of the object o.
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5.1.2 Objects and Polymorphism
Almost all Sage operations are polymorphic, i.e., they apply to several kinds of
objects. For example, whatever the nature of the object o that we want to “factor”,
we will use the same notation o.factor() (or its shortcut factor(o)). The
computations to be performed however differ to factor an integer or a polynomial!
They also differ if the polynomial has rational coefficients, or coefficients in a
finite field. The object class determines the version of the factor code that will
be called.

Similarly, like the usual mathematical notation, the product of two objects a
and b can always be denoted a*b, even if the algorithm used differs in each case1.
Here is a product of two integers:

sage: 3 * 7
21

a product of two rational numbers, obtained by multiplying the numerators and
denominators, then reducing the fraction:

sage: (2/3) * (6/5)
4/5

a product of two complex numbers, using the relation i2 = −1:

sage: (1 + I) * (1 - I)
2

some commutative products of two formal expressions:

sage: (x + 2) * (x + 1)
(x + 2)*(x + 1)
sage: (x + 1) * (x + 2)
(x + 2)*(x + 1)

Apart from the notation simplicity, this form of polymorphism enables us to
write generic programs which apply to any object having the involved operations
(here multiplication):

sage: def fourth_power(a):
....: a = a * a
....: a = a * a
....: return a

sage: fourth_power(2)
16
sage: fourth_power(3/2)
81/16

1For a binary operation like the product, the selection of the appropriate method is slightly
more complex than what was described above. Indeed, we might deal with mixed operations
like the sum 2 + 3/4 of an integer and of a rational number. In this case, 2 will be converted in
the rational 2/1, and the addition of two rationals will be called. The rules that describe which
operand must be converted, and how it should be converted, are part of the coercion model.
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sage: fourth_power(I)
1
sage: fourth_power(x+1)
(x + 1)^4
sage: M = matrix([[0,-1],[1,0]]); M
[ 0 -1]
[ 1 0]
sage: fourth_power(M)
[1 0]
[0 1]

5.1.3 Introspection
Python objects, and therefore Sage objects, have some introspection features. This
means that, during execution, we can “ask” an object for its class, its methods,
etc., and manipulate the obtained informations using the usual constructions
of the programming language. For instance, the class of an object o is itself a
Python object, and we can obtain it using type(o):

sage: t = type(5/1); t
<type 'sage.rings.rational.Rational'>
sage: t == type(5)
False

We see here that the expression 5/1 constructs the rational number 5, which
differs — as Python object — from the integer 5!

The introspection tools also give access to the factorisation on-line help from
an object of integer type:

sage: o = 720
sage: o.factor?
Docstring:

Return the prime factorization of this integer as a formal
Factorization object.

...

and even to the source code of that function:

sage: o.factor??
...
def factor(self, algorithm='pari', proof=None, ...)

...
if algorithm == 'pari':

...
elif algorithm in ['kash', 'magma']:

...

Avoiding some technical details, we see here that Sage delegates the integer
factorisation to other tools (PARI/GP, Kash, or Magma).
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In the same vein, we can use automatic completion to interactively “ask” an
object o which operations can be applied to it:

sage: o.n<tab>
o.n o.nbits o.ndigits
o.next_prime o.next_prime_power o.next_probable_prime
o.nth_root o.numerator o.numerical_approx

Once again, it is a form of introspection.

5.2 Elements, Parents, Categories
5.2.1 Elements and Parents
In the preceding section, we have seen the concept of class of an object. In
practice, it is enough to know that this notion exists; we rarely have to explicitly
look for the type of an object. However, Sage introduces another concept closer
to mathematics: the parent of an object, that we will detail now.

Assume for example that we want to know if an element a is invertible. The
answer does not only depend on the element itself, but also on the mathematical
set A it belongs to (and its potential inverse). For example, the number 5 is not
invertible in the set Z of integers, since its inverse 1/5 is not an integer:

sage: a = 5; a
5
sage: a.is_unit()
False

However, it is invertible in the set of rational numbers:
sage: a = 5/1; a
5
sage: a.is_unit()
True

Sage gives two different answers to that question since, as seen in the above
section, the objects 5 and 5/1 have different classes.

In some object-oriented computer algebra systems, like MuPAD or Axiom,
the mathematical set X to which x belongs (here Z or Q) is simply the class of
x. Sage follows the approach of the Magma system, and defines the set X by
another object attached to x, called its parent:

sage: parent(5)
Integer Ring
sage: parent(5/1)
Rational Field

We can obtain these two sets with the following shortcuts:
sage: ZZ
Integer Ring
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sage: QQ
Rational Field

and use them to easily convert an element from one set to the other, when it
makes sense:

sage: QQ(5).parent()
Rational Field
sage: ZZ(5/1).parent()
Integer Ring
sage: ZZ(1/5)
Traceback (most recent call last):
...

TypeError: no conversion of this rational to integer

More generally, the P(x) syntax — where P is a parent — tries to convert
the object x into an element of P. We show four different instances of 1: as
integer 1 ∈ Z, as rational number 1 ∈ Q, as real floating-point 1.0 ∈ R or complex
floating-point 1.0 + 0.0i ∈ C:

sage: ZZ(1), QQ(1), RR(1), CC(1)
(1, 1, 1.00000000000000, 1.00000000000000)

Exercise 19. Find two Sage objects having the same type and different parents.
Then find two Sage objects having the same parent and different types.

5.2.2 Constructions
The parents being themselves first-class objects, we can apply operations to them.
For example, one can construct the cartesian product Q2:

sage: cartesian_product([QQ, QQ])
The Cartesian product of (Rational Field, Rational Field)

find Q as the fraction field of Z:

sage: ZZ.fraction_field()
Rational Field

construct the ring of polynomials in x with coefficients in Z:

sage: ZZ['x']
Univariate Polynomial Ring in x over Integer Ring

Using an incremental approach, we can construct complex algebraic structures
like the 3× 3 matrix space with polynomial coefficients on a finite field:

sage: Z5 = GF(5); Z5
Finite Field of size 5
sage: P = Z5['x']; P
Univariate Polynomial Ring in x over Finite Field of size 5
sage: M = MatrixSpace(P, 3, 3); M
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Full MatrixSpace of 3 by 3 dense matrices over
Univariate Polynomial Ring in x over Finite Field of size 5

and draw a random element from this domain:

sage: M.random_element()
[2*x^2 + 3*x + 4 4*x^2 + 2*x + 2 4*x^2 + 2*x]
[ 3*x 2*x^2 + x + 3 3*x^2 + 4*x]
[ 4*x^2 + 3 3*x^2 + 2*x + 4 2*x + 4]

5.2.3 Further Reading: Categories
In general, a parent does not itself have a parent, but a category that indicates
its properties:

sage: QQ.category()
Join of Category of number fields and Category of quotient fields and

Category of metric spaces

Sage knows that Q is a field:

sage: QQ in Fields()
True

and thus, for instance, an additive and commutative group (see Figure 5.1):

sage: QQ in CommutativeAdditiveGroups()
True

Since Q is a field, Q[x] is a Euclidean ring:

sage: QQ['x'] in EuclideanDomains()
True

All these properties are used to provide rigorous and efficient computations
on elements of these sets.

5.3 Domains with a Normal Form
Let us now browse some of the parents we will encounter in Sage.

We have seen in §2.1 how important normal forms2 can be in computer
algebra, since they allow to determine if two objects are mathematically equal in
comparing their normal form representations. Each of the fundamental parents
presented in this section corresponds to a domain with normal form, i.e., a set
of mathematical objects having a normal form. This allows Sage to represent
without any ambiguity the elements of each of these parents3.

2In this book we use both canonical form and normal form to mean that two objects are
mathematically identical if their canonical (or normal) forms are equal. Sometimes normal form
is meant as a weaker notion, where only zero is assumed to have a unique representation.

3Most of the other parents available in Sage correspond to domains with a normal form, but
not all of them. It also happens that, for efficiency reasons, Sage represents elements in normal
form only when explicitly requested.
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principal ideal domains

commutative rings

commutative additive monoids

additive magmas

semigroups

integral domains

rings

euclidean domains

semirings

commutative additive semigroups

objects

unique factorization domains

rngs

sets with partial maps

fields

gcd domains

magmas

division rings

sets

domains

monoidscommutative additive groups

Figure 5.1 – A short part of the category graph in Sage.
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Some basic Python types

Python integers int
Python floating-point numbers float

Booleans (true, false) bool
Character strings str

Basic numerical domains

Integers Z ZZ or IntegerRing()
Rational numbers Q QQ or RationalField()

Floating-point numbers with p bits Reals(p) or RealField(p)
Complex floating-point numbers with p bits Complexes(p) or ComplexField(p)

Rings and finite fields

Integers modulo n, Z/nZ Integers(n) or IntegerModRing(n)
Finite field Fq GF(q) or FiniteField(q)

Algebraic numbers

Algebraic numbers Q̄ QQbar or AlgebraicField()
Real algebraic numbers AA or AlgebraicRealField()
Number fields Q[x]/〈p〉 NumberField(p)

Symbolic computation

Matrices m× n with coefficients in A MatrixSpace(A, m, n)
Polynomials A[x, y] A['x,y'] or PolynomialRing(A, 'x,y')

Series A[[x]] A[['x']] or PowerSeriesRing(A, 'x')
Symbolic expressions SR

Table 5.1 – Main domains and parents.

5.3.1 Elementary Domains
We call elementary computational domains (or simply elementary domains) the
classical sets of constants, with no variable: integers, rational numbers, floating-
point numbers, booleans, integers modulo n...

Integers. The integers are represented in radix two internally, and printed by
default in radix ten. As seen above, the Sage integers are objects of the class
Integer. Their parent is the ring Z:

sage: 5.parent()
Integer Ring

The integers are always in normal form; their equality is thus easy to check. As
a consequence, to be able to represent integers in factorised form, the factor
command needs a specific class:

sage: type(factor(4))
<class 'sage.structure.factorization_integer.IntegerFactorization'>
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The Integer class is specific to Sage: by default, Python uses integers of
type int. In general, the conversion from Integer to int — or vice versa — is
automatic, but it might be necessary to convert explicitly by

sage: int(5)
5
sage: type(int(5))
<type 'int'>

or conversely

sage: Integer(5)
5
sage: type(Integer(5))
<type 'sage.rings.integer.Integer'>

Rational Numbers. The normal form property extends to rational numbers,
elements of QQ, which are always represented in reduced form. Therefore, in the
command

sage: factorial(99) / factorial(100) - 1 / 50
-1/100

the factorials are first evaluated, then the obtained fraction 1/100 is put into
reduced form. Sage then constructs the rational number 1/50, performs the
subtraction, then reduces again the result (there is nothing to do here).

Floating-Point Numbers. Real numbers cannot all be exactly represented
in a finite format. Their numerical values are approximated by floating-point
numbers, which will be discussed in more detail in Chapter 11.

Within Sage, floating-point numbers are encoded in binary radix. As a
consequence, the floating-point number corresponding to the input 0.1 slightly
differs from 1/10, since 1/10 is not exactly representable in binary! Each floating-
point number has its own precision. The parent of floating-point numbers with p-
bit significand is denoted Reals(p), which for the default precision (p = 53) is
also denoted RR. As for integers, Sage floating-point numbers differ from their
Python analogue.

When they appear in a sum, product or quotient containing also integers
or rational numbers, floating-point numbers are “contagious”; the complete
expression is then evaluated as a floating-point number:

sage: 72/53 - 5/3 * 2.7
-3.14150943396227

Likewise, when the argument of some usual function is a floating-point number,
the result is again a floating-point number:

sage: cos(1), cos(1.)
(cos(1), 0.540302305868140)
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The numerical_approx method (or its alias n) evaluates numerically the
remaining expressions. An optional argument allows us to set the number of
significant digits used for this evaluation. Here is for example π with 50 significant
digits:

sage: pi.n(digits=50) # variant: n(pi,digits=50)
3.1415926535897932384626433832795028841971693993751

Complex Floating-Point Numbers. Similarly, the floating-point approxi-
mations of complex numbers with precision p are elements of Complexes(p) —
or its alias ComplexField(p) —, or CC with the default precision of 53 bits. For
example, we can construct a complex floating-point number and compute its
argument by

sage: z = CC(1,2); z.arg()
1.10714871779409

Complex symbolic expressions

The imaginary unit i (denoted I or i), already encountered in the preced-
ing chapters, is not an element of CC, but a symbolic expression (see §5.4.1):

sage: I.parent()
Symbolic Ring

We can use it to define a complex floating-point number with an explicit
conversion:

sage: (1.+2.*I).parent()
Symbolic Ring
sage: CC(1.+2.*I).parent()
Complex Field with 53 bits of precision

In the world of symbolic expressions, the methods real, imag and abs
give respectively the real part, the imaginary part and the modulus of a
complex number:

sage: z = 3 * exp(I*pi/4)
sage: z.real(), z.imag(), z.abs().canonicalize_radical()
(3/2*sqrt(2), 3/2*sqrt(2), 3)

Booleans. Logic expressions also form a computational domain with normal
form, but the class of boolean values is a basic type without specific parent in
Sage. The two normal forms are True and False (or true and false):

sage: a, b, c = 0, 2, 3
sage: a == 1 or (b == 2 and c == 3)
True
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In tests and loops, the conditions built from the operators or and and are evaluated
lazily from left to right. This means that the evaluation of a condition or ends
as soon as the first True value is encountered, without evaluating the rightmost
terms; similarly with and and False. Hence the following divisibility test of b by
a does not produce any error even if a = 0:

sage: a = 0; b = 12; (a == 0 and b == 0) or (a != 0 and b % a == 0)

The operator not takes precedence over and, which in turn takes precedence
over or, the equality and comparison tests having precedence over all boolean
operators. The two following tests are thus equivalent to the above one:

sage: ((a == 0) and (b == 0)) or ((a != 0) and (b % a == 0))
sage: a == 0 and b == 0 or not a == 0 and b % a == 0

In addition, Sage allows multiple equality or inequality tests, exactly like in
mathematics:

x ≤ y < z ≤ t encoded by x <= y < z <= t
x = y = z 6= t x == y == z != t

In the simple cases, these tests are automatically performed; otherwise we call
the bool command to force the evaluation:

sage: x, y = var('x, y')
sage: bool( (x-y)*(x+y) == x^2-y^2 )
True

Integers Modulo n. To define an integer modulo n, we first build its parent,
the ring Z/nZ:

sage: Z4 = IntegerModRing(4); Z4
Ring of integers modulo 4
sage: m = Z4(7); m
3

As in the case of floating-point numbers, the computations involving m are done
modulo 4 via automatic conversions. In the following example, 3 and 1 are
automatically converted in elements of Z/4Z:

sage: 3 * m + 1
2

When p is prime, we can also choose to build Z/pZ as a field:

sage: Z3 = GF(3); Z3
Finite Field of size 3

Both IntegerModRing(n) and GF(p) are domains with a normal form: the
reduction modulo n or p are done automatically. The computations in rings and
finite fields are detailed in Chapter 6.
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5.3.2 Compound Domains
From well-defined constants, some classes of symbolic objects with variables and
having a normal form can be constructed. The most important such classes are
matrices, polynomials, rational functions and truncated power series.

The corresponding parents are parameterised by their coefficient domain. For
example, matrices with integer coefficients differ from matrices with coefficients
in Z/nZ, and the corresponding computation rules are automatically applied,
without requiring an explicit call to a function reducing integers modulo n.

Part II of this book is mainly dedicated to these objects.

Matrices. The normal form4 of a matrix is obtained when all its coefficients
are themselves in normal form. As a consequence, a matrix defined over a field or
ring with normal form is automatically in normal form:

sage: a = matrix(QQ, [[1,2,3],[2,4,8],[3,9,27]])
sage: (a^2 + 1) * a^(-1)
[ -5 13/2 7/3]
[ 7 1 25/3]
[ 2 19/2 27]

The matrix function call is a shortcut. Internally, Sage builds the corresponding
parent, here the space of 3× 3 matrices with coefficients in Q (which has normal
form), then uses it to construct the matrix:

sage: M = MatrixSpace(QQ,3,3); M
Full MatrixSpace of 3 by 3 dense matrices over Rational Field
sage: a = M([[1,2,3],[2,4,8],[3,9,27]])
sage: (a^2 + 1) * a^(-1)
[ -5 13/2 7/3]
[ 7 1 25/3]
[ 2 19/2 27]

The operations on symbolic matrices are described in Chapter 8, and on numerical
matrices in Chapter 13.

Polynomials and Fractions. Like matrices, polynomials in Sage “know” the
type of their coefficients. Their parents are polynomial rings like Z[x] or C[x, y, z],
presented in detail in Chapters 7 and 9, and which can be built as follows:

sage: P = ZZ['x']; P
Univariate Polynomial Ring in x over Integer Ring
sage: F = P.fraction_field(); F
Fraction Field of Univariate Polynomial Ring in x over Integer Ring
sage: p = P(x+1) * P(x); p
x^2 + x
sage: p + 1/p

4Do not confuse this concept of normal form with the normal forms of a matrix viewed as a
linear transformation, which will be discussed in Chapter 8.
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(x^4 + 2*x^3 + x^2 + 1)/(x^2 + x)
sage: parent(p + 1/p)
Fraction Field of Univariate Polynomial Ring in x over Integer Ring

As we will see in §5.4.2, there is no optimal representation for polynomials and
fractions. The elements of polynomial rings are represented in expanded form.
These rings do therefore have a normal form as soon as the coefficients themselves
belong to a domain with normal form.

These polynomials differ from the polynomial expressions (Symbolic Ring)
we have seen in Chapter 2, which do not have a well-defined coefficient type,
neither a parent reflecting such a type. The latter give an alternative to “true”
polynomials, which can be useful, for example, to mix polynomials and other
mathematical expressions. However, contrary to polynomial rings, when we work
with such expressions, we have to explicitly call a reduction command like expand
to put them in normal form (if such a form exists).

Power Series. Truncated power series are objects of the form

a0 + a1 x+ a2 x
2 + · · ·+ an x

n +O(xn+1)

used for example to represent Taylor expansions, and whose usage in Sage is
described in §7.5. The parent of series in x, truncated at order n, and with
coefficients in A, is the ring A[[x]], build with PowerSeriesRing(A, ’x’, n).

Like polynomials, truncated power series have an analogue in the world SR of
symbolic expressions. The corresponding command to reduce to normal form is
series.

sage: f = cos(x).series(x == 0, 6); 1 / f

1
1+(− 1

2 )x2+ 1
24x

4+O(x6)

sage: (1 / f).series(x == 0, 6)

1 + 1
2x

2 + 5
24x

4 +O
(
x6)

Algebraic Numbers. An algebraic number is defined as root of a polynomial.
When the polynomial degree is 5 or more, in general it is not possible to explicitly
write its roots in terms of the operations +,−,×, /,

√
·. However, many com-

putations involving the roots can be performed successfully without any other
information than the polynomial itself.

sage: k.<a> = NumberField(x^3 + x + 1); a^3; a^4+3*a
-a - 1
-a^2 + 2*a

This book does not describe in detail how to play with algebraic numbers in Sage,
however several examples can be found in Chapters 7 and 9.
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5.4 Expressions vs Computational Domains
Several approaches are thus possible for manipulating objects like polynomials
within Sage. We can consider them as particular symbolic expressions, as in the
first chapters, or introduce a given ring of polynomials and compute with its
elements. To conclude this chapter, we briefly describe the parent of symbolic
expressions, the SR domain, then we demonstrate through several examples how
important it is to control the domain of computations, and the differences between
both approaches.

5.4.1 Symbolic Expressions as a Computational Domain
Symbolic expressions themselves form a computational domain. In Sage, their
parent is the symbolic ring:

sage: parent(sin(x))
Symbolic Ring

that can also be obtained with:

sage: SR
Symbolic Ring

The properties of this ring are rather fuzzy; it is commutative:

sage: SR.category()
Category of commutative rings

and the computation rules assume roughly speaking that all symbolic variables
are in C.

The form of expressions in SR (polynomials, fractions, trigonometric expres-
sions) being not apparent in their class or parent, the result of a computation
often requires some manual transformations to obtain the desired form (see §2.1),
by using for example expand, combine, collect and simplify. To use these
functions well we have to know which kind of transformation they perform, to
which sub-classes5 of symbolic expressions these transformations apply, and which
of these sub-classes have a normal form. In particular, the blind use of the
simplify command can yield wrong results. Some variants of simplify allow
then to precisely describe the transformation to apply.

5.4.2 Examples: Polynomials and Normal Forms
Let us build the ring Q[x1, x2, x3, x4] of polynomials in 4 variables:

sage: R = QQ['x1,x2,x3,x4']; R
Multivariate Polynomial Ring in x1, x2, x3, x4 over Rational Field
sage: x1, x2, x3, x4 = R.gens()

The elements of R are automatically put in expanded form:

5In the sense of subset, and not of Python class.
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sage: x1 * (x2 - x3)
x1*x2 - x1*x3

which, as we have seen, is a normal form. In particular, the test to zero in R is
trivial:

sage: (x1+x2)*(x1-x2) - (x1^2 - x2̂ 2)
0

An expanded form is not always optimal. For example, if we build the
Vandermonde determinant

∏
1≤i<j≤n(xi − xj):

sage: prod( (a-b) for (a,b) in Subsets([x1,x2,x3,x4],2) )
x1̂ 3*x2̂ 2*x3 - x1̂ 2*x2̂ 3*x3 - x1̂ 3*x2*x3^2 + x1*x2̂ 3*x3^2
+ x1̂ 2*x2*x3^3 - x1*x2̂ 2*x3^3 - x1̂ 3*x2̂ 2*x4 + x1̂ 2*x2̂ 3*x4
+ x1̂ 3*x3̂ 2*x4 - x2̂ 3*x3̂ 2*x4 - x1̂ 2*x3̂ 3*x4 + x2̂ 2*x3̂ 3*x4
+ x1̂ 3*x2*x4^2 - x1*x2̂ 3*x4^2 - x1̂ 3*x3*x4^2 + x2̂ 3*x3*x4^2
+ x1*x3̂ 3*x4^2 - x2*x3̂ 3*x4^2 - x1̂ 2*x2*x4^3 + x1*x2^2*x4^3
+ x1̂ 2*x3*x4^3 - x2̂ 2*x3*x4^3 - x1*x3̂ 2*x4^3 + x2*x3^2*x4^3

we obtain 4! = 24 terms. The same construct with an expression from SR remains
under factored form, and is much more compact and readable:

sage: x1, x2, x3, x4 = SR.var('x1, x2, x3, x4')
sage: prod( (a-b) for (a,b) in Subsets([x1,x2,x3,x4],2) )
-(x1 - x2)*(x1 - x3)*(x1 - x4)*(x2 - x3)*(x2 - x4)*(x3 - x4)

In addition, a factored representation allows faster gcd computations. However, it
would be unwise to put automatically every polynomial into factored form, even
if this is also a normal form, since the factorisation is computationally expensive,
and makes additions costly.

In general, depending on the kind of computation, the optimal representation
of an element is not always its normal form (if it exists). This leads computer
algebra systems to a compromise with expressions. Some basic simplifications, like
the reduction of fractions or the multiplication by zero, are done automatically; the
other transformations are left to the user with the provided specialised commands.

5.4.3 Example: Polynomial Factorisation
Let us consider the factorisation of the following polynomial expression:

sage: x = var('x')
sage: p = 54*x^4+36*x^3-102*x^2-72*x-12
sage: factor(p)
6*(x^2 - 2)*(3*x + 1)^2

Is this answer satisfying? It is indeed a factorisation of p, however its completeness
heavily depends on the context! For now, Sage considers p as a symbolic expression,
which happens to be polynomial. Sage cannot know if we wish to factor p as a
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product of polynomials with integer coefficients, or with rational coefficients (for
example).

To take full control, we will make it clear in which mathematical set (i.e.,
computational domain) p lives. To start, let us consider p as a polynomial with
integer coefficients. We thus define the ring R = Z[x] of these polynomials:

sage: R = ZZ['x']; R
Univariate Polynomial Ring in x over Integer Ring

Then we convert p in this ring:

sage: q = R(p); q
54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12

The output seems identical, however q knows it is an element of R:

sage: parent(q)
Univariate Polynomial Ring in x over Integer Ring

As a consequence, its factorisation is uniquely defined:

sage: factor(q)
2 * 3 * (3*x + 1)^2 * (x^2 - 2)

Let us proceed similarly in the rational field:

sage: R = QQ['x']; R
Univariate Polynomial Ring in x over Rational Field
sage: q = R(p); q
54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12
sage: factor(q)
(54) * (x + 1/3)̂ 2 * (x^2 - 2)

In this new context, the factorisation is again well-defined, but different from the
previous one.

Let us now compute a complete factorisation over the complex numbers. A
first solution is to allow a numerical approximation of complex numbers with 16
bits of precision:

sage: R = ComplexField(16)['x']; R
Univariate Polynomial Ring in x over Complex Field
with 16 bits of precision
sage: q = R(p); q
54.00*x^4 + 36.00*x^3 - 102.0*x^2 - 72.00*x - 12.00
sage: factor(q)
(54.00) * (x - 1.414) * (x + 0.3333)̂ 2 * (x + 1.414)

Another solution is to extend the field of rational numbers, e.g., adding
√

2.

sage: R = QQ[sqrt(2)]['x']; R
Univariate Polynomial Ring in x over Number Field in sqrt2
with defining polynomial x^2 - 2
sage: q = R(p); q
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54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12
sage: factor(q)
(54) * (x - sqrt2) * (x + sqrt2) * (x + 1/3)̂ 2

Finally, maybe we want that coefficients be considered modulo 5?

sage: R = GF(5)['x']; R
Univariate Polynomial Ring in x over Finite Field of size 5
sage: q = R(p); q
4*x^4 + x^3 + 3*x^2 + 3*x + 3
sage: factor(q)
(4) * (x + 2)^2 * (x^2 + 3)

5.4.4 Synthesis
In the preceding examples, we have shown how the user might control the level
of rigour in her/his computations.

On the one hand, she/he can use symbolic expressions. These expressions
live in the ring SR. They offer several methods (presented in Chapter 2) which
apply well to some sub-classes of expressions, like polynomial expressions. When
we recognise to which classes a given expression belongs to, this helps to know
which functions could be applied. The simplification of expressions is a particular
problem where this recognition is crucial. The main classes of expression are
defined to take into account this simplification issue, and we will prefer this
approach in the rest of this book.

On the other hand, the user can construct a parent which will explicitly define
the computational domain. It is especially interesting when this parent has a
normal form: i.e., when two objects are mathematically equal if and only if they
have the same representation.

As a summary, the main advantage of symbolic expressions (SR) is their ease
of use: no explicit declaration of the computational domain, easy addition of new
variables or functions, easy change of the computational domain (for example
when one takes the sine of a polynomial expression), use of all possible calculus
tools (integration, etc.). The advantages of explicitly defining the computational
domain are in the first place pedagogical, more rigorous computations6, the
automatic normal form transformation (which can also be a drawback!), and
the easy access to advanced constructions that would be difficult with symbolic
expressions (computations in a finite field or an algebraic extension of Q, in a
non-commutative ring, etc.).

6Sage is not a certified computer algebra system: a bug is thus always possible; however,
there will be no use of implicit assumption.
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God made the integers, all else is the work of man.
Leopold Kronecker (1823 - 1891)

6
Finite Fields and Elementary Number

Theory

This chapter describes the use of Sage for elementary number theory, for working
with objects related to finite fields (§6.1), for primality testing (§6.2) and integer
factorisation (§6.3); we will also discuss some applications (§6.4).

6.1 Finite Fields and Rings
Finite rings and fields are basic objects, both in number theory and throughout
computer algebra. Indeed, many algorithms in computer algebra involve compu-
tations over finite fields, where one can exploit the information obtained using
techniques such as Hensel lifting, or reconstruction using the Chinese Remainder
Theorem. As an example, we can mention the Cantor-Zassenhaus algorithm
for factoring univariate polynomials with integer coefficients, which begins by
factoring the polynomial over a finite field.

6.1.1 The Ring of Integers Modulo n

In Sage, the ring Z/nZ of integers modulo n is defined using the constructor
IntegerModRing (or, more simply, Integers). All objects constructed using this
constructor and those derived from them are systematically reduced modulo n,
and so have a canonical (or normal) form: that is to say, two variables representing
the same value modulo n also have the same internal representation. In certain
very special situations, it may be more efficient to delay these reductions modulo
n; for example, if one multiplies matrices with such coefficients, one would then
rather work with integers, and carry out the reductions modulo n “by hand”
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using a % n. Note that the modulus n does not appear explicitly in the displayed
value:

sage: a = IntegerModRing(15)(3); b = IntegerModRing(17)(3); a, b
(3, 3)
sage: a == b
False

One consequence of this is that when one uses “cut-and-paste” to copy integers
modulo n, one loses information about n. Given a variable whose value is
an integer modulo n, one can recover information about n using the methods
base_ring or parent, and the value of n using the method characteristic:

sage: R = a.parent(); R
Ring of integers modulo 15
sage: R.characteristic()
15

The basic operations (addition, subtraction and multiplication) are overloaded for
integers modulo n, and call the appropriate functions; also, integers are converted
automatically when one of the operands is an integer modulo n:

sage: a + a, a - 17, a * a + 1, a^3
(6, 1, 10, 12)

For inversion, 1/a mod n, or division, b/a mod n, Sage carries out the operation
if possible; otherwise, i.e., when a and n have a nontrivial common factor, a
ZeroDivisionError is raised:

sage: 1/(a+1)
4
sage: 1/a
Traceback (most recent call last):
...

ZeroDivisionError: Inverse does not exist.

To obtain the value of a as an integer from its residue a mod n, one can use
the method lift or even ZZ:

sage: z = a.lift(); y = ZZ(a); y, type(y), y == z
(3, <type 'sage.rings.integer.Integer'>, True)

The additive order of a modulo n is the smallest integer k > 0 such that
ka = 0 mod n. It is equal to k = n/g, where g = gcd(a, n), and is given by the
method additive_order (we will see later that one can also use Mod or mod to
define integers modulo n):

sage: [Mod(x,15).additive_order() for x in range(0,15)]
[1, 15, 15, 5, 15, 3, 5, 15, 15, 5, 3, 15, 5, 15, 15]

The multiplicative order of a modulo n, for a coprime1 to n, is the smallest
integer k > 0 such that ak = 1 mod n. (If a had a common divisor p with n, then

1“coprime” and “relatively prime” are synonymous.
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ak mod n would be a multiple of p for all k.) If this multiplicative order equals
ϕ(n), which is the order of the multiplicative group modulo n, one says that a
is a generator of this group. Thus for n = 15, there is no generator, since the
maximal order is 4 < 8 = ϕ(15):

sage: [[x, Mod(x,15).multiplicative_order()]
....: for x in range(1,15) if gcd(x,15) == 1]
[[1, 1], [2, 4], [4, 2], [7, 4], [8, 4], [11, 2], [13, 4], [14, 2]]

Here is an example with n = p prime, where 3 is a generator:

sage: p = 10^20 + 39; mod(2,p).multiplicative_order()
50000000000000000019
sage: mod(3,p).multiplicative_order()
100000000000000000038

An important operation on Z/nZ is modular exponentiation, which means
to calculate ae mod n. The RSA crypto-system relies on this operation. To
calculate ae mod n, the most efficient algorithms require of the order of log e
multiplications or squarings modulo n. It is crucial to reduce all calculations
modulo n systematically, and not compute ae first as an integer, as the following
example shows:

sage: n = 3^100000; a = n-1; e = 100
sage: %timeit (a^e) % n
5 loops, best of 3: 387 ms per loop
sage: %timeit power_mod(a,e,n)
125 loops, best of 3: 3.46 ms per loop

6.1.2 Finite Fields
Finite fields2 are defined using the constructor FiniteField, or more simply
GF. As well as constructing prime fields GF(p) with p prime, one can construct
non-prime finite fields GF(q) with q = pk, where p is prime and k > 1 an integer.
As with rings, objects created in such a field have a canonical representation,
and reduction is carried out at each arithmetic operation. Finite fields have the
same properties as rings (§6.1.1), with in addition the possibility of inverting each
non-zero element:

sage: R = GF(17); [1/R(x) for x in range(1,17)]
[1, 9, 6, 13, 7, 3, 5, 15, 2, 12, 14, 10, 4, 11, 8, 16]

A non-prime finite field Fpk with p prime and k > 1 is isomorphic to the
quotient ring of polynomials in Fp[x] modulo a monic irreducible polynomial f
of degree k. In this case, Sage will provide a name for the generator of the field,
that is, the variable x, or the user can provide a name:

2The finite field with q elements is either denoted Fq, or GF(q) (where “GF” stands for
“Galois Field”). Here we will use the notation Fq for the mathematical object, and the notation
GF(q) in Sage code.
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sage: R = GF(9,name='x'); R
Finite Field in x of size 3^2

Here, Sage has automatically chosen the polynomial f :
sage: R.polynomial()
x^2 + 2*x + 2

Field elements are thus represented by polynomials in the generator x, ak−1x
k−1 +

· · ·+ a1x+ a0, with coefficients ai which are elements of Fp:
sage: Set([r for r in R])
{0, 1, 2, x, x + 1, x + 2, 2*x, 2*x + 1, 2*x + 2}

One can also make Sage use a specific irreducible polynomial f :
sage: Q.<x> = PolynomialRing(GF(3))
sage: R2 = GF(9, name='x', modulus=x^2+1); R2
Finite Field in x of size 3^2

Be careful: even though the two fields R and R2 created above are both
isomorphic to F9, Sage provides no isomorphism between them automatically:

sage: p = R(x+1); R2(p)
Traceback (most recent call last):
...

TypeError: unable to coerce from a finite field other than the prime
subfield

6.1.3 Rational Reconstruction
The problem of rational reconstruction is a useful application of modular methods.
Given a residue a modulo m, it involves finding a “small” rational number x/y
such that x/y ≡ a mod m. If one knows that such a small rational number
exists, instead of computing x/y directly as a rational number, one may instead
compute x/y modulo m, which gives the residue a, and then one recovers x/y via
rational reconstruction. This second approach is often more efficient, since one has
replaced computations with rationals, possibly involving costly gcd calculations,
by modular calculations.

Lemma. Let a,m ∈ N, with 0 < a < m. There exists at most one pair of
coprime integers x, y ∈ Z such that x/y ≡ a mod m with 0 < |x|, y ≤

√
m/2.

Such a pair x, y does not always exist: for example, take a = 2 and m =
5. The rational reconstruction algorithm is based on the extended Euclidean
algorithm. The extended gcd of m and a computes a sequence of integers
ai = αim+βia, where the ai are decreasing, and the coefficients αi, βi increase in
absolute value. It therefore suffices to stop as soon as |ai|, |βi| ≤

√
m/2, and the

solution is then x/y = ai/βi. This algorithm is implemented in the Sage function
rational_reconstruction, which returns x/y when a solution exists, raising an
error if not:

sage: rational_reconstruction(411,1000)
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-13/17
sage: rational_reconstruction(409,1000)
Traceback (most recent call last):
...

ArithmeticError: rational reconstruction of 409 (mod 1000) does not
exist

To illustrate the use of rational reconstruction, consider the computation of
the Harmonic numbers Hn = 1 + 1/2 + · · · + 1/n. A naive calculation using
rational numbers would be as follows:

sage: def harmonic(n):
....: return add([1/x for x in range(1,n+1)])

Now we know that Hn can be written in the form pn/qn with integers pn, qn,
where qn = lcm(1, 2, . . . , n). We also know that Hn ≤ logn+ 1, which allows us
to bound pn. This leads to the following function, which finds Hn using modular
arithmetic and rational reconstruction:

sage: def harmonic_mod(n,m):
....: return add([1/x % m for x in range(1,n+1)])
sage: def harmonic2(n):
....: q = lcm(range(1,n+1))
....: pmax = RR(q*(log(n)+1))
....: m = ZZ(2*pmax̂ 2)
....: m = ceil(m/q)*q + 1
....: a = harmonic_mod(n,m)
....: return rational_reconstruction(a,m)

In this example, the function harmonic2 is no more efficient than the original
function harmonic, but it illustrates the method. It is not always necessary to
know a rigorous bound for x and y, as a rough estimate “by eye” will suffice,
provided that one is able to verify easily that x/y is the correct solution.

One can generalise the method of rational reconstruction to handle numerators
x and denominators y of different sizes; see for example Section 5.10 of the book
[vzGG03].

6.1.4 The Chinese Remainder Theorem
Another useful application of modular arithmetic involves the use of the Chinese
Remainder Theorem, or CRT, commonly called “Chinese remaindering”. Given
two coprime moduli m and n, and two residue classes a mod m and b mod n,
we seek an integer x such that x ≡ a mod m and x ≡ b mod n. The Chinese
Remainder Theorem enables us to recover x uniquely modulo the product mn. To
see how this works, one deduces from x ≡ a mod m that x has the form x = a+λm
with λ ∈ Z. Substituting into x ≡ b mod n, one obtains λ ≡ λ0 mod n, where
λ0 = (b− a)/m mod n. Hence x = x0 + µnm, where x0 = a+ λ0m, and µ is an
arbitrary integer.
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Here we have presented the simplest variant of the Chinese Remainder Theorem.
One can also consider the case of several moduli m1,m2, . . . ,mk. The Sage
command for finding x0, given a, b,m, n, is crt(a,b,m,n):

sage: a = 2; b = 3; m = 5; n = 7; lambda0 = (b-a)/m % n; a + lambda0 * m
17
sage: crt(2,3,5,7)
17

Let us return to the computation of Hn. We first compute Hn mod mi for
i = 1, 2, . . . , k, and then obtain Hn mod m1 · · ·mk by Chinese remaindering,
finally recovering the value of Hn by rational reconstruction:

sage: def harmonic3(n):
....: q = lcm(range(1,n+1))
....: pmax = RR(q*(log(n)+1))
....: B = ZZ(2*pmax̂ 2)
....: a = 0; m = 1; p = 2^63
....: while m < B:
....: p = next_prime(p)
....: b = harmonic_mod(n,p)
....: a = crt(a,b,m,p)
....: m = m*p
....: return rational_reconstruction(a,m)
sage: harmonic(100) == harmonic3(100)
True

The Sage function crt may also be used when the moduli m and n are not
coprime. If g = gcd(m,n), then a solution exists if and only if a ≡ b mod g:

sage: crt(15,1,30,4)
45
sage: crt(15,2,30,4)
Traceback (most recent call last):
...

ValueError: No solution to crt problem since gcd(30,4) does not divide
15-2

A more complicated application of the Chinese Remainder Theorem is given in
Exercise 23.

6.2 Primality
Testing whether an integer is prime is a fundamental operation for a symbolic
computer software package. Even if the user is not aware of it, such tests are
carried out thousands of times per second by the software. For example, to factor
a polynomial in Z[x], one starts by factoring it in Fp[x] for some prime number p,
and one must therefore find a suitable prime.
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Useful commands

Ring of integers modulo n IntegerModRing(n)
Finite field with q elements GF(q)

Pseudo-primality test is_pseudoprime(n)
Primality test is_prime(n)

Table 6.1 – Review.

There are two main classes of primality test. The most efficient are pseudo-
primality tests, and are in general based on forms of Fermat’s Little Theorem,
which says that if p is prime, then every integer a with 0 < a < p is an element
of the multiplicative group (Z/pZ)∗, and hence ap−1 ≡ 1 mod p. One uses
small values of a (2, 3, . . .) to speed up the computation of ap−1 mod p. If
ap−1 6≡ 1 mod p, then p is certainly not prime. If ap−1 ≡ 1 mod p, one cannot
conclude either that p is or is not prime; we say that p is a (Fermat) pseudo-prime
to base a. The intuition is that an integer p which is a pseudo-prime to many
bases has a greater chance of being prime (but see below). Pseudo-primality
tests share the property that when they return the verdict False, the number
is certainly composite, whereas when they return True, no definite conclusion is
possible.

The second class consists of true primality tests. These tests always return a
correct answer, but can be less efficient than pseudo-primality tests, especially
for numbers that are pseudo-primes to many bases, and in particular for actual
primes. Many software packages only provide pseudo-primality tests, despite the
name of the corresponding function (isprime, for example) sometimes leading
the user to believe that a true primality test is provided. Sage provides two
different functions: is_pseudoprime for pseudo-primality, and is_prime for true
primality:

sage: p = previous_prime(2^400)
sage: %timeit is_pseudoprime(p)
625 loops, best of 3: 1.07 ms per loop
sage: %timeit is_prime(p)
5 loops, best of 3: 485 ms per loop

We see in this example that the primality test is more costly; when possible,
therefore, one prefers to use is_pseudoprime.

Some primality testing algorithms provide a certificate, which allows an
independent subsequent verification of the result, often more efficiently than the
test itself. Sage does not provide such a certificate in the current release, but one
can construct one using Pocklington’s Theorem:

Theorem. Let n > 1 be an odd integer such that n− 1 = FR, with F ≥
√
n.

If for each prime factor p of F , there exists a such that an−1 ≡ 1 mod n and
a(n−1)/p − 1 is coprime to n, then n is prime.

Consider for example n = 231−1. The factorisation of n−1 is 2 ·32 ·7 ·11 ·31 ·
151 · 331. One can take F = 151 · 331, and a = 3 satisfies the condition for both
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factors p = 151 and p = 331. Hence it suffices to prove the primality of 151 and
331 in order to deduce that n is prime. This test uses modular exponentiation in
an important way.

Carmichael numbers

Carmichael numbers are composite integers n that are pseudo-primes to
all bases coprime to n. Fermat’s Little Theorem is insufficient to distinguish
these from primes, however many bases are tested. The smallest Carmichael
number is 561 = 3 · 11 · 17. A Carmichael number must have at least three
prime factors: for suppose that n = pq is a Carmichael number, with p, q
primes and p < q; by definition of Carmichael numbers, if a is a primitive
root modulo q then an−1 ≡ 1 modulo n implies that the same congruence
also holds modulo q, and hence that n−1 is a multiple of q−1. Then n must
be of the form q+λq(q− 1), since it is a multiple of q and n− 1 is a multiple
of q − 1; now n = pq implies p = λ(q − 1) + 1, which contradicts p < q. If
n = pqr, then n is a Carmichael number if an−1 ≡ 1 mod p, and similarly
modulo q and r, since then the Chinese Remainder Theorem implies that
an−1 ≡ 1 mod n. So a sufficient condition is that n− 1 is divisible by each
of p− 1, q − 1 and r − 1:

sage: [560 % (x-1) for x in [3,11,17]]
[0, 0, 0]

Exercise 20. Write a Sage function to count the Carmichael numbers n = pqr ≤ N ,
with p, q, r distinct odd primes. How many do you find for N = 104, 105, 106, 107?
(Richard Pinch has counted 20138200 Carmichael numbers less than 1021.)

Finally, in order to repeat an operation on all prime numbers in an interval, it
is better to employ the construction prime_range, which constructs a table of
primes using a sieve, than to simply use a loop with next_probable_prime or
next_prime:

sage: def count_primes1(n):
....: return add([1 for p in range(n+1) if is_prime(p)])
sage: %timeit count_primes1(10^5)
5 loops, best of 3: 674 ms per loop

The function is faster if one uses is_pseudoprime instead of is_prime:

sage: def count_primes2(n):
....: return add([1 for p in range(n+1) if is_pseudoprime(p)])
sage: %timeit count_primes2(10^5)
5 loops, best of 3: 256 ms per loop

In this example, it is worth using a loop rather than constructing a list of 105

elements, and again is_pseudoprime is faster than is_prime:

sage: def count_primes3(n):
....: s = 0; p = 2
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....: while p <= n: s += 1; p = next_prime(p)

....: return s
sage: %timeit count_primes3(10^5)
5 loops, best of 3: 49.2 ms per loop
sage: def count_primes4(n):
....: s = 0; p = 2
....: while p <= n: s += 1; p = next_probable_prime(p)
....: return s
sage: %timeit count_primes4(10^5)
5 loops, best of 3: 48.6 ms per loop

Using the iterator prime_range is faster still:

sage: def count_primes5(n):
....: s = 0
....: for p in prime_range(n): s += 1
....: return s
sage: %timeit count_primes5(10^5)
125 loops, best of 3: 2.67 ms per loop

6.3 Factorisation and Discrete Logarithms
One says that an integer a is a square, or a quadratic residue, modulo n if
there exists x such that a ≡ x2 mod n. If not, one says that a is a quadratic
non-residue3 modulo n. When n = p is prime, there is a test to decide efficiently
whether a is a quadratic residue, using the computation of the Jacobi symbol
of a and p, denoted (a|p), which takes the values {−1, 0, 1}, where (a|p) = 0
when a is a multiple of p, and (a|p) = 1 (respectively, (a|p) = −1) when a is
(respectively, is not) a square modulo p. The complexity of computing the Jacobi
symbol (a|n) is essentially the same as that of computing the gcd of a and n,
namely O(M(`) log `) where ` is the size of n, and M(`) is the cost of multiplying
two integers of size `. However, implementations of Jacobi symbols — as of gcds
— do not all have this complexity (here, a.jacobi(n) computes (a|n)):

sage: p = (2^42737+1)//3; a = 3^42737
sage: %timeit a.gcd(p)
125 loops, best of 3: 4.3 ms per loop
sage: %timeit a.jacobi(p)
25 loops, best of 3: 26.1 ms per loop

When n is composite, finding solutions to x2 ≡ a mod n is as hard as factorising
n. Moreover, the Jacobi symbol, which is relatively simple to compute, only gives
partial information: if (a|n) = −1 then there is no solution, since the existence
of a solution implies (a|p) = 1 for all prime factors p of n, hence (a|n) = 1; but
(a|n) = +1 does not imply that a is a square modulo n when n is composite.

3This terminology is traditional, though “non-quadratic residue” would be more logical.
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Let n be a positive integer, let g be a generator of the multiplicative group
modulo n (we assume here that n is such that this group is cyclic), and let a be
coprime to n. By definition of the fact that g is a generator, there is an integer x
such that gx = a mod n. The discrete logarithm problem consists of finding such
an integer x. The log method gives a solution to this problem:

sage: p = 10^10+19; a = mod(17,p); a.log(2)
6954104378
sage: mod(2,p)^6954104378
17

The best known algorithms for computing discrete logarithms have the same order
of complexity, as a function of the size of n, as those for factoring n. However,
the current implementation of discrete logarithms in Sage is not very efficient:

sage: p = 10^37+43; a = mod(17,p)
sage: time r = a.log(2)
CPU times: user 1min 32s, sys: 64 ms, total: 1min 32s
Wall time: 1min 34s

Aliquot sequences

The aliquot sequence associated to a positive integer n is the recurrent
sequence (sk) defined by: s0 = n and sk+1 = σ(sk)− sk, where σ(sk) is the
sum of the positive divisors of n, i.e., sk+1 is the sum of the proper divisors
of sk, excluding sk itself. The iteration stops when sk = 1, so sk−1 is prime,
or when the sequence (sk) enters a cycle. For example, starting from n = 30
one obtains:

30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1.

When the cycle has length one, we say that the starting integer is perfect, for
example 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are perfect. When the
cycle has length two, the two integers in the cycle are called amicable and
form an amicable pair, for example 220 and 284. When the cycle has length
three or more, the integers in the cycle are called sociable.

Exercise 21. Calculate the aliquot sequence starting with 840, take the 5 first and
5 last terms, and draw the graph of log10 sk as a function of k (you can use the function
sigma).

6.4 Applications
6.4.1 The Constant δ
The constant δ is a two-dimensional generalisation of Euler’s constant γ. It is
defined as follows:

δ = lim
n→∞

(
n∑
k=2

1
πr2
k

− logn
)
, (6.1)
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where rk is the radius of the smallest closed disc in the affine plane R2 containing at
least k points of Z2. For example, r2 = 1/2, r3 = r4 =

√
2/2, r5 = 1, r6 =

√
5/2,

r7 = 5/4, and r8 = r9 =
√

2:

Exercise 22 (Masser-Gramain constant). 1. Write a function which takes as input
a positive integer k, and returns the radius rk and the centre (xk, yk) of a minimal disc,
of radius rk, containing at least k points of Z2. You may assume that rk <

√
k/π.

2. Write a function which draws the circle with centre (xk, yk) and radius rk, together
with m ≥ k points of Z2, as above.

3. Using the bounding inequalities√
π(k − 6) + 2−

√
2

π
< rk <

√
k − 1
π

, (6.2)

calculate an approximation of δ with an error at most 0.3.

6.4.2 Computation of a Multiple Integral

This application was inspired by the article [Bea09]. Let k and n1, n2, . . . , nk be
non-negative integers. We wish to compute the integral

I =
∫
V

xn1
1 xn2

2 · · ·x
nk
k dx1 dx2 . . . dxk,

where the domain of integration is defined by V = {x1 ≥ x2 ≥ · · · ≥ xk ≥
0, x1 + · · · + xk ≤ 1}. For example, for k = 2, n1 = 3, n2 = 5, one finds the
value

I =
∫ 1/2

x2=0

∫ 1−x2

x1=x2

x3
1x

5
2 dx1 dx2 = 13

258048 .
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Exercise 23. Given that I is a rational number, develop an algorithm using rational
reconstruction and/or the Chinese Remainder Theorem to calculate I. Implement the
algorithm in Sage, and apply it to the case [n1, . . . , n31] =

[9, 7, 8, 11, 6, 3, 7, 6, 6, 4, 3, 4, 1, 2, 2, 1, 1, 1, 2, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0].



7
Polynomials

This chapter will discuss univariate polynomials and related objects, mainly
rational functions and formal power series. We will first see how to perform with
Sage some transformations like the Euclidean division of polynomials, factorisation
into irreducible polynomials, root isolation, or partial fraction decomposition. All
these transformations will take into account the ring or field where the polynomial
coefficients live: Sage enables us to compute in polynomial rings A[x], in their
quotient A[x]/〈P (x)〉, in fraction fields K(x) or in formal power series rings A[[x]]
for a whole set of base rings.

Operations on polynomials also have some unexpected applications. How
would you automatically guess the next term of the sequence

1, 1, 2, 3, 8, 11, 39...?

For example, you could use the Padé approximation of rational functions, presented
in Section 7.4.3! How could you get a series expansion of the solutions of the
equation exf(x) = f(x)? An answer can be found in Section 7.5.3.

We assume in general that the reader is used to playing with polynomials and
rational functions at the first year university level. However, we will discuss more
advanced subjects. How to prove that the solutions of the equation x5 − x− 1
cannot be expressed by radicals? It suffices to compute its Galois group, as
explained in Section 7.3.4. The corresponding parts are not used elsewhere in this
book, and the reader may skip them. Finally, this chapter gives a few examples
with algebraic and p-adic numbers.

Here we will focus on polynomials with one variable, called univariate polyno-
mials. Multivariate polynomials are discussed in Chapter 9.
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Playing with polynomial rings, R = A[x]

construction (dense repr.) R.<x> = A[] or R.<x> = PolynomialRing(A)
e.g. Z[x], Q[x], R[x], Z/nZ[x] ZZ['x'], QQ['x'], RR['x'], Integers(n)['x']
construction (sparse repr.) R.<x> = PolynomialRing(A, sparse=True)
accessing the base ring A R.base_ring()
accessing the variable x R.gen() or R.0

tests (integral, noetherian...) R.is_integral_domain(), R.is_noetherian(), ...

Table 7.1 – Polynomial rings.

7.1 Polynomial Rings
7.1.1 Introduction
We have seen in Chapter 2 how to perform computations on symbolic expressions,
elements of the “symbolic ring” SR. Some methods available for these expressions,
for example degree, are suited for polynomials:

sage: x = var('x'); p = (2*x+1)*(x+2)*(x^4-1)
sage: print("{} is of degree {}".format(p, p.degree(x)))
(x^4 - 1)*(2*x + 1)*(x + 2) is of degree 6

In some computer algebra systems, like Maple or Maxima, representing polyno-
mials as particular symbolic expressions is the usual way to play with them. Like
Axiom, Magma or MuPAD, Sage also lets you manipulate polynomials in a more
algebraic way, and “knows” how to compute in rings like Q[x] or Z/4Z [x, y, z].

Hence, to reproduce the above example in a well-defined polynomial ring,
we assign to the Python variable x the unknown of the polynomial ring in x
with rational coefficients, given by polygen(QQ, ’x’), instead of the symbolic
variable x returned1 by var(’x’):

sage: x = polygen(QQ, 'x'); p = (2*x+1)*(x+2)*(x^4-1)
sage: print("{} is of degree {}".format(p, p.degree()))
2*x^6 + 5*x^5 + 2*x^4 - 2*x^2 - 5*x - 2 is of degree 6

We notice that the polynomial is automatically expanded. The “algebraic” poly-
nomials are always represented in normal form. This is a crucial difference with
respect to the polynomials in SR. In particular, when two algebraic polynomi-
als are mathematically equal, their computer representation is the same, and a
comparison coefficient by coefficient is enough to check their equality.

The available functions on algebraic polynomials are much wider and more
efficient that those on (polynomial) symbolic expressions.

7.1.2 Building Polynomial Rings
Polynomials in Sage, like many other algebraic objects, generally have coefficients
in a commutative ring. This is the point of view of this book; however, most of

1A little difference here: while var(’x’) is equivalent to x = var(’x’) in interactive use,
polygen(QQ, ’x’) alone does not change the value of the Python variable x.
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the examples will have coefficients in a field. In the whole chapter, the letters A
and K respectively correspond to a commutative ring and to a field.

The first step to perform a computation in an algebraic structure R is often
to build R itself. We build Q[x] with

sage: R = PolynomialRing(QQ, 'x')
sage: x = R.gen()

The ’x’ on the first line is a character string, which is the name of the indeter-
minate, or generator of the ring. The x on the second line is a Python variable
in which one stores the generator; using the same name makes the code easier
to read. The object stored in the variable x represents the polynomial x ∈ Q[x].
Its parent (the parent of a Sage object is the algebraic structure “from which it
comes”, see §5.1) is the ring QQ[’x’]:

sage: x.parent()
Univariate Polynomial Ring in x over Rational Field

The polynomial x ∈ Q[x] is considered different from x ∈ A[x] for a base ring
A 6= Q, and also different from those, like t ∈ Q[t], whose indeterminate has a
different name.

The expression PolynomialRing(QQ, ’t’) might also be written QQ[’t’].
We often combine this abbreviation with the construction S.<g> = ..., which
simultaneously assigns a structure to the variable S and its generator to the
variable g. The construction of the ring Q[x] and of its indeterminate then reduces
to R.<x> = QQ[]. The form x = polygen(QQ, ’x’) seen above is equivalent to

sage: x = PolynomialRing(QQ, 'x').gen()

Let us mention that we can choose between several memory representations
when we construct a polynomial ring. The differences between representations
are discussed in §7.6.

Exercise 24 (Variables and indeterminates).

1. How would you define x and y to obtain the following results?

sage: x^2 + 1
y^2 + 1
sage: (y^2 + 1).parent()
Univariate Polynomial Ring in x over Rational Field

2. After the instructions

sage: Q.<x> = QQ[]; p = x + 1; x = 2; p = p + x

what is the value of p?
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Polynomials with polynomial coefficients

In Sage, we can define polynomial rings with coefficients in any com-
mutative ring, including another polynomial ring. But beware that rings
A[x][y] constructed this way differ from the true polynomial rings with several
variables like A[x, y]. The latter, presented in Chapter 9, are better suited for
usual computations. Indeed, working in A[x][y][. . . ] introduces an asymmetry
between the variables.

However, in some cases we precisely want to have one main variable, and
the other variables as parameters. The polynomial method of multivariate
polynomials allows us to isolate one variable, more or less like the collect
method of symbolic expressions. For example, to compute the reciprocal of
a given polynomial with respect to one of its variables:

sage: R.<x,y,z,t> = QQ[]; p = (x+y+z*t)^2
sage: p.polynomial(t).reverse()
(x^2 + 2*x*y + y^2)*t^2 + (2*x*z + 2*y*z)*t + z^2

Here, p.polynomial(t) creates a univariate polynomial in the variable t and
with coefficients in QQ[x,y,z], to which we then apply the reverse method.

The other conversions between A[x, y, . . . ] and A[x][y][. . . ] work as ex-
pected:

sage: x = polygen(QQ); y = polygen(QQ[x], 'y')
sage: p = x^3 + x*y + y + y^2; p
y^2 + (x + 1)*y + x^3
sage: q = QQ['x,y'](p); q
x^3 + x*y + y^2 + y
sage: QQ['x']['y'](q)
y^2 + (x + 1)*y + x^3

7.1.3 Polynomials
Creation and Basic Arithmetic. After the instruction R.<x> = QQ[], the
expressions constructed from x and rational constants with operations + and *
are elements of Q[x]. For example, in p = x + 2, Sage automatically determines
that the values of the variable x and the integer 2 can both be seen as elements
of Q[x]. The addition routine of polynomials in Q[x] is thus called; it builds and
returns the polynomial x+ 2 ∈ Q[x].

Another way to build a polynomial is to enumerate its coefficients:
sage: def rook_polynomial(n, var='x'):
....: return ZZ[var]([binomial(n, k)^2 * factorial(k)
....: for k in (0..n) ])

The above function constructs polynomials whose coefficient of xk is the number
of ways to put k rooks on an n × n chessboard, so that two rooks cannot
capture each other; this explains the name of the function. The parentheses after
ZZ[var] force the conversion of a given object into an element of this ring. The
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Accessing data, syntactic operations

indeterminate x p.variables(), p.variable_name()
coefficient of xk p[k]

leading coefficient p.leading_coefficient()
degree p.degree()

list of coefficients p.list() or p.coefficients(sparse=False)
list of non-zero coefficients p.coefficients()

dictionary degree 7→ coefficient p.dict()
tests (monic, constant...) p.is_monic(), p.is_constant(), ...

Basic arithmetic

operations p+ q, p− q, p× q, pk p + q, p - q, p * q, p^k
substitution x := a p(a) or p.subs(a)

derivative p.derivative() or p.diff()

Transformations

transformation of coefficients p.map_coefficients(f)
change of base ring A[x]→ B[x] p.change_ring(B) or B['x'](p)

reciprocal polynomial p.reverse()

Table 7.2 – Basic operations on polynomials p, q ∈ A[x].

conversion of a list [a0, a1, . . . ] into an element of ZZ[’x’] yields the polynomial
a0 + a1 x+ · · · ∈ Z[x].

Global View on Polynomial Operations. The elements of a polynomial ring
are represented by Python objects from the class Polynomial, or from derived
classes. The main operations2 available for these objects are summarised in
Tables 7.2 to 7.5. For example, we query the degree of a polynomial with the
degree method. Similarly, p.subs(a) or simply p(a) yields the value of p at the
point a, but also computes the composition p ◦ a when a itself is a polynomial,
and more generally evaluates a polynomial of A[x] at an element of an A-algebra:

sage: p = R.random_element(degree=4) # a random polynomial
sage: p
-4*x^4 - 52*x^3 - 1/6*x^2 - 4/23*x + 1
sage: p.subs(x^2)
-4*x^8 - 52*x^6 - 1/6*x^4 - 4/23*x^2 + 1
sage: p.subs(matrix([[1,2],[3,4]]))
[-375407/138 -273931/69]
[ -273931/46 -598600/69]

We will come back to the content of the last two tables in Sections 7.2.1 and 7.3.
2There are many other operations. Those tables omit functions which are too advanced,

some specialised variants of methods we mention, and numerous methods common to all ring
elements, and even to all Sage objects, which have no particular interest on polynomials. Note
however that some specialised methods (for example p.rescale(a), equivalent to p(a*x)) are
often more efficient than more general methods that could replace them.
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Change of Ring. The exact list of available operations, their meaning and
their efficiency heavily depend on the base ring. For example, the polynomials in
GF(p)[’x’] have a method small_roots which returns their small roots with
respect to the characteristic p; those in QQ[’x’] do not have such a method, since
it makes no sense. The factor method exists for all polynomials, but raises an
exception NotImplementedError for polynomials with coefficients in SR or in
Z/4Z. This exception means that this operation is not available in Sage for this
kind of object, despite having a mathematical meaning.

It is very useful to be able to juggle the different rings of coefficients on
which we might consider a given polynomial. Applied to a polynomial in A[x],
the method change_ring(B) returns its image in B[x], when a natural method
to convert the coefficients exists. The conversion is often given by a canonical
morphism from A to B: in particular, change_ring might be used to extend
the base ring to gain additional algebraic properties. Here for example, the
polynomial p is irreducible over the rationals, but it factors on R:

sage: x = polygen(QQ)
sage: p = x^2 - 16*x + 3
sage: p.factor()
x^2 - 16*x + 3
sage: p.change_ring(RDF).factor()
(x - 15.810249675906654) * (x - 0.18975032409334563)

The RDF domain is that of “machine floating-point numbers”, and is discussed in
Chapter 11. The obtained factorisation is approximate; it is not enough to recover
the original polynomial. To represent real roots of polynomials with integer
coefficients in a way that enables exact computations, we use the domain AA of
real algebraic numbers. We will see some examples in the following sections.

The same method change_ring allows to reduce a polynomial in Z[x] modulo
a prime number:

sage: p.change_ring(GF(3))
x^2 + 2*x

Conversely, if B ⊂ A and if the coefficients of p are in fact in B, we also call
change_ring to recover p in B[x].

Iteration. More generally, one often needs to apply a given transformation to
all coefficients of a polynomial. The method map_coefficients is designed for
this. Applied to a polynomial p ∈ A[x] with parameter a function f , it returns
the polynomial obtained by applying f to all non-zero coefficients of p. In general,
f is an anonymous function defined using the lambda construction (see §3.3.2).
Here is for example how one can compute the conjugate of a polynomial with
complex coefficients:

sage: QQi.<myI> = QQ[I] # myI is the i of QQi, I that of SR
sage: R.<x> = QQi[]; p = (x + 2*myI)^3; p
x^3 + 6*I*x^2 - 12*x - 8*I
sage: p.map_coefficients(lambda z: z.conjugate())
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x^3 - 6*I*x^2 - 12*x + 8*I

Here, we can also write p.map_coefficients(conjugate), since conjugate(z)
has the same effect as z.conjugate for z ∈ Q[i]. Calling explicitly a method
of the object z is more robust: the code then works for all objects having a
conjugate() method, and only for those.

Operations on polynomial rings

The parents of polynomial objects, i.e., the rings A[x], are themselves
first class Sage objects. Let us briefly see how to use them.

A first family of methods enables us to construct particular polynomials,
to draw random ones, or to enumerate families, here those of degree exactly 2
over F2:

sage: list(GF(2)['x'].polynomials(of_degree=2))
[x^2, x^2 + 1, x^2 + x, x^2 + x + 1]

We will call some of these methods in the examples of the next sections, to
build objects on which we will work. Chapter 15 explains more generally
how to enumerate finite sets with Sage.

Secondly, the system “knows” some basic facts for each polynomial ring.
We can check whether a given object is a ring, if it is noetherian:

sage: A = QQ['x']
sage: A.is_ring() and A.is_noetherian()
True

or if Z is a sub-ring of Q[x], and for which values of n the ring Z/nZ is
integral:

sage: ZZ.is_subring(A)
True
sage: [n for n in range(20)
....: if Integers(n)['x'].is_integral_domain()]
[0, 2, 3, 5, 7, 11, 13, 17, 19]

These capabilities largely rely on the Sage category system (see also §5.2.3).
Polynomial rings belong to a number of “categories”, like the category of
sets, that of Euclidean rings, and many more:

sage: R.categories()
[Category of euclidean domains,
Category of principal ideal domains,
...
Category of sets with partial maps, Category of objects]

This reflects that any polynomial ring is also a set, a Euclidean domain, and
so on. The system can thus automatically transfer to polynomial rings the
general properties of objects from these different categories.
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Divisibility and Euclidean division

divisibility test p | q p.divides(q)
multiplicity of a divisor qk | p k = p.valuation(q)
Euclidean division p = qd+ r q, r = p.quo_rem(d) or q = p//d, r = p%d
pseudo-division akp = qd+ r q, r, k = p.pseudo_divrem(d)

greatest common divisor p.gcd(q), gcd([p1, p2, p3])
least common multiple p.lcm(q), lcm([p1, p2, p3])

extended gcd g = up+ vq g, u, v = p.xgcd(q) or xgcd(p, q)
“Chinese remainder” c ≡ a mod p, c = crt(a, b, p, q)

c ≡ b mod q

Miscellaneous

interpolation p(xi) = yi p = R.lagrange_polynomial([(x1,y1), ...])
content of p ∈ Z[x] p.content()

Table 7.3 – Polynomial arithmetic.

7.2 Euclidean Arithmetic
Apart from the sum and product, the most elementary operations on polynomials
are the Euclidean division and the greatest common divisor computation. The
corresponding operators and methods (Table 7.3) mimic those on integers. How-
ever, quite often, these operations are hidden by an additional abstraction layer:
quotient of rings (§7.2.2) where each arithmetic operation involves an implicit
Euclidean division, rational functions (§7.4) whose normalisation implies some
gcd computations...

7.2.1 Divisibility
Divisions. The Euclidean division works in a field, and more generally in a
commutative ring when the leading coefficient of the divisor is invertible, since this
coefficient is the only one from the base ring by which it is required to divide:

sage: R.<t> = Integers(42)[]; (t^20-1) % (t^5+8*t+7)
22*t^4 + 14*t^3 + 14*t + 6

When the leading coefficient is not invertible, we can still define a pseudo Euclidean
division (pseudo-division for short): let A be a commutative ring, p, d ∈ A[x], and
a the leading coefficient of d. Then there exists two polynomials q, r ∈ A[x], with
deg r < deg d, and an integer k ≤ deg p− deg d+ 1 such that

akp = qd+ r.

The pseudo-division is given by the pseudo_divrem method.
To perform an exact division, we also use the Euclidean quotient operator //.

Indeed, dividing by a non-constant polynomial with / returns a result of type
rational function (see §7.4), or fails when this makes no sense:

sage: ((t^2+t)//t).parent()
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Univariate Polynomial Ring in t over Ring of integers modulo 42
sage: (t^2+t)/t
Traceback (most recent call last):
...
TypeError: self must be an integral domain.

Exercise 25. Usually, in Sage, polynomials in Q[x] are represented on the monomial
basis (xn)n∈N. Chebyshev polynomials Tn, defined by Tn(cos θ) = cos(nθ), form a family
of orthogonal polynomials and thus a basis of Q[x]. The first Chebyshev polynomials
are

sage: x = polygen(QQ); [chebyshev_T(n, x) for n in (0..4)]
[1, x, 2*x^2 - 1, 4*x^3 - 3*x, 8*x^4 - 8*x^2 + 1]

Write a function taking as input an element of Q[x] and returning the coefficients of its
decomposition in the basis (Tn)n∈N.

Exercise 26 (Division by increasing powers). Let n ∈ N and u, v ∈ A[x], with v(0)
invertible. Then a unique pair (q, r) of polynomials exists in A[x] with deg q ≤ n such
that u = qv + xn+1r. Write a function which computes q and r by an analogue of the
Euclidean division algorithm. How would you perform this computation in the easiest
way, using available Sage functions?

GCD. Sage is able to compute the gcd of polynomials over a field, thanks
to the Euclidean structure of K[x], but also on some other rings, including the
integers:

sage: S.<x> = ZZ[]; p = 2*(x^10-1)*(x^8-1)
sage: p.gcd(p.derivative())
2*x^2 - 2

We can prefer the more symmetric expression gcd(p,q), which yields the same
result as p.gcd(q). It is though slightly less natural in Sage since it is not a
general mechanism: gcd(p,q) calls a function of two arguments, defined manually
in the source code of Sage, and which calls in turn p.gcd. Only some usual
methods have such an associated function.

The extended gcd, i.e., the computation of a Bézout relation

g = gcd(p, q) = ap+ bq, g, p, q, a, b ∈ K[x]

is given by p.xgcd(q):

sage: R.<x> = QQ[]; p = x^5-1; q = x^3-1
sage: print("the gcd is %s = (%s)*p + (%s)*q" % p.xgcd(q))
the gcd is x - 1 = (-x)*p + (x^3 + 1)*q

The xgcd method also exists for polynomials in ZZ[’x’], but beware: since Z[x]
is not a principal ideal ring, the result is in general not a Bézout relation (ap+ bq
might be an integer multiple of the gcd)!
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7.2.2 Ideals and Quotients

Ideals of A[x]. The ideals of polynomial rings, and the quotients by these ideals,
are represented by Sage objects built from the polynomial ring by the methods
ideal and quo. The product of a tuple of polynomials by a polynomial ring is
interpreted as an ideal:

sage: R.<x> = QQ[]
sage: J1 = (x^2 - 2*x + 1, 2*x^2 + x - 3)*R; J1
Principal ideal (x - 1) of Univariate Polynomial Ring in x
over Rational Field

We can multiply ideals, and reduce a polynomial modulo an ideal:

sage: J2 = R.ideal(x^5 + 2)
sage: ((3*x+5)*J1*J2).reduce(x^10)
421/81*x^6 - 502/81*x^5 + 842/81*x - 680/81

The reduced polynomial remains in this case an element of QQ[’x’]. Another
way is to construct the quotient by an ideal and project the elements on it. The
parent of the projected element is then in the quotient ring. The lift method of
the quotient elements converts them back into the initial ring.

sage: B = R.quo((3*x+5)*J1*J2) # quo automatically names 'xbar' which is
sage: B(x^10) # the generator of B image of x
421/81*xbar̂ 6 - 502/81*xbar̂ 5 + 842/81*xbar - 680/81
sage: B(x^10).lift()
421/81*x^6 - 502/81*x^5 + 842/81*x - 680/81

If K is a field, then the ring K[x] is principal: the ideals are represented
during computations by a generator, all this being an algebraic language for the
operations seen in §7.2.1. Its principal advantage is that quotient rings can be
easily used in new constructions, here that of

(
F5[t]/〈t2 + 3〉

)
[x]:

sage: R.<t> = GF(5)[]; R.quo(t^2+3)['x'].random_element()
(3*tbar + 1)*x^2 + (2*tbar + 3)*x + 3*tbar + 4

Sage also allows building non principal ideals like in Z[x], however the available
operations are then limited — except in case of multivariate polynomials over a
field, which are the subject of Chapter 9.

Exercise 27. We define the sequence (un)n∈N with the initial conditions un = n+ 7
for 0 ≤ n < 1000, and the linear recurrence relation

un+1000 = 23un+729 − 5un+2 + 12un+1 + 7un (n ≥ 0).

Compute the last five digits of u1010000 . Hint: we might look at the algorithm from §3.2.4.
However, this algorithm is too expensive when the order of the recurrence is large.
Introduce a clever quotient of polynomial rings to avoid this issue.
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Construction of ideals and quotient rings Q = R/J

ideal 〈u, v, w〉 R.ideal(u, v, w) or (u, v, w)*R
reduction of p modulo J J.reduce(p) or p.mod(J)
quotient ring R/J , R/〈p〉 R.quo(J), R.quo(p)

ring whose quotient gave Q Q.cover_ring()
isomorphic number field Q.number_field()

Elements of K[x]/〈p〉

lift (section of R � R/J) u.lift()
minimal polynomial u.minpoly()

characteristic polynomial u.charpoly()
matrix u.matrix()
trace u.trace()

Table 7.4 – Ideals and quotients.

Algebraic Extensions. An important special case is the quotient of K[x] by
an irreducible polynomial to build an algebraic extension of K. The number fields,
finite extensions of Q, are represented by the objects NumberField, distinct from
the quotients of QQ[’x’]. When this makes sense, the method number_field of a
quotient of polynomial rings returns the corresponding number field. The interface
of number fields, more complete than that of quotient rings, is beyond the scope
of this book. The non-prime finite fields Fpk , built as algebraic extensions of the
prime finite fields Fp, are described in §6.1.

7.3 Factorisation and Roots
A third level after the elementary operations and the Euclidean arithmetic
concerns the decomposition of a polynomial into a product of irreducible factors,
or factorisation. It is maybe where computer algebra is the most useful!

7.3.1 Factorisation
Irreducibility Test. On the algebraic side, the simplest question about the
factorisation of a polynomial is whether it is irreducible. Naturally, the answer
depends on the base ring. The method is_irreducible tells if a polynomial is
irreducible in its parent ring. For example, the polynomial 3x2 − 6 is irreducible
over Q, but not over Z (why?):

sage: R.<x> = QQ[]; p = 3*x^2 - 6
sage: p.is_irreducible(), p.change_ring(ZZ).is_irreducible()
(True, False)

Factorisation. The factorisation of an integer of hundreds or thousands of
digits is a very hard problem. In contrast, factoring a polynomial of degree 1000
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on Q or Fp — for small p — needs only a few seconds3:

sage: p = QQ['x'].random_element(degree=1000)
sage: %timeit p.factor()
1 loop, best of 3: 2.45 s per loop

Here ends the algorithmic similarity between polynomials and integers we have
seen in preceding sections.

Like the irreducibility test, the factorisation is performed on the base ring. For
example, the factorisation of a polynomial over the integers contains a constant
part, itself split into prime factors, and a product of primitive polynomials, i.e.,
whose coefficients are coprime:

sage: x = polygen(ZZ); p = 54*x^4+36*x^3-102*x^2-72*x-12
sage: p.factor()
2 * 3 * (3*x + 1)^2 * (x^2 - 2)

Sage is able to factor polynomials on various rings — rational, complex (approxi-
mate), finite fields and number fields in particular:

sage: for A in [QQ, ComplexField(16), GF(5), QQ[sqrt(2)]]:
....: print(str(A) + ":")
....: print(A['x'](p).factor())
Rational Field:
(54) * (x + 1/3)̂ 2 * (x^2 - 2)
Complex Field with 16 bits of precision:
(54.00) * (x - 1.414) * (x + 0.3333)̂ 2 * (x + 1.414)
Finite Field of size 5:
(4) * (x + 2)^2 * (x^2 + 3)
Number Field in sqrt2 with defining polynomial x^2 - 2:
(54) * (x - sqrt2) * (x + sqrt2) * (x + 1/3)̂ 2

The result of a decomposition into irreducible factors is not a polynomial (since
the polynomials are always in normal form, i.e., in expanded form!), but an
object f of type Factorization. We obtain the ith factor with f[i], and we get
back the polynomial with f.expand(). The Factorization objects also provide
methods like gcd and lcm which have the same meaning as for polynomials, but
work on the factored forms.

Square-Free Decomposition. Despite its good theoretical and practical com-
plexity, the full factorisation of a polynomial is an expensive operation. The
square-free decomposition is a weaker factorisation, much easier to obtain — some
gcd computations are enough — and which already brings a lot of information.

Let p =
∏r
i=1 p

mi
i ∈ K[x] be a polynomial that splits into a product of

irreducible factors over a field K of characteristic zero. We say that p is square-
free if all its factors pi have multiplicity mi = 1, i.e., if the roots of p in an

3On the theoretical side, we know how to factor in Q[x] in polynomial time, and in Fp[x]
in probabilistic polynomial time, whereas we do not know whether integers can be factored in
polynomial time.
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Factorisation

irreducibility test p.is_irreducible()
factorisation p.factor()

square-free factorisation p.squarefree_decomposition()
square-free part p/ gcd(p, p′) p.radical()

Roots

roots in A, in D p.roots(), p.roots(D)
real roots p.roots(RR), p.real_roots()

complex roots p.roots(CC), p.complex_roots()
isolation of real roots p.roots(RIF), p.real_root_intervals()

isolation of complex roots p.roots(CIF)
resultant p.resultant(q)

discriminant p.discriminant()
Galois group (p irreducible) p.galois_group()

Table 7.5 – Factorisation and roots.

algebraic closure of K are simple. A square-free decomposition is a factorisation
into a product of square-free and coprime factors:

p = f1f
2
2 . . . f

s
s where fm =

∏
mi=m

pi.

Hence, the square-free decomposition splits the irreducible factors of p by multi-
plicity. The square-free part f1 . . . fs = p1 . . . pr of p is the polynomial with simple
roots which has the same roots as p, disregarding multiplicities.

7.3.2 Root Finding
The computation of the roots of a polynomial may be performed in several ways:
Do we want real or complex roots? Roots in another domain? Do we want
exact or approximate roots? With or without multiplicities? In a guaranteed or
heuristic way? The roots method of a polynomial returns by default the roots in
its base ring, in the form of a list of pairs (root, multiplicity):

sage: R.<x> = ZZ[]; p = (2*x^2-5*x+2)^2 * (x^4-7); p.roots()
[(2, 2)]

With a parameter, roots(D) returns the roots in the domain D, here the rational
roots, and approximations of the `-adic roots for ` = 19:

sage: p.roots(QQ)
[(2, 2), (1/2, 2)]
sage: p.roots(Zp(19, print_max_terms=3))
[(7 + 16*19 + 17*19^2 + ... + O(19^20), 1),
(12 + 2*19 + 19^2 + ... + O(19^20), 1),
(10 + 9*19 + 9*19^2 + ... + O(19^20), 2),
(2 + O(19^20), 2)]
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This works for a large number of domains, with more or less efficiency.
In particular, selecting for D the field of algebraic numbers QQbar or that

of real algebraic numbers AA enables us to compute exactly the complex or real
roots of a polynomial with rational coefficients:

sage: roots = p.roots(AA); roots
[(-1.626576561697786?, 1), (0.500000000000000?, 2),
(1.626576561697786?, 1), (2.000000000000000?, 2)]

Sage plays transparently for the user with different representations of algebraic
numbers. One encodes each α ∈ Q̄ by its minimal polynomial together with a
sufficiently accurate interval to distinguish α from the other roots. Therefore,
despite their output, the returned roots are not just approximate values. They
can be reused in exact computations:

sage: a = roots[0][0]^4; a.simplify(); a
7

Here, we have raised the first root found to the fourth power, then forced Sage to
simplify the result to make it clear it equals the integer 7.

A variant of the exact resolution is to simply isolate the roots, i.e., determine
intervals containing exactly one root each, by giving as domain D that of the
real intervals RIF or complex intervals CIF. Among the other useful domains in
the case of a polynomial with rational coefficients, let us mention RR, CC, RDF,
CDF, which all correspond to approximate numerical roots, and the number fields
QQ[alpha].The specific methods real_roots, complex_roots and (for some base
rings) real_root_intervals offer additional options or give slightly different
results from the roots method. The numerical approximation and isolation of
roots is discussed in more detail in §12.2.

7.3.3 Resultant

In a unique factorisation domain, the existence of a common non-constant factor
between two polynomials is characterised by the nullity of their resultant Res(p, q),
which is a polynomial in their coefficients. A major advantage of the resultant
compared to the gcd is that it specialises well under ring morphisms. For example,
the polynomials x− 12 and x− 20 are coprime in Z[x], but the nullity of their
resultant

sage: x = polygen(ZZ); (x-12).resultant(x-20)
-8

modulo n shows that they have a common factor in Z/nZ if and only if n divides 8.
Let p =

∑m
i=0 pix

i and q =
∑n
i=0 qix

i be two non constant polynomials in
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A[x], with pm, qn 6= 0. The resultant of p and q is defined by

Res(p, q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pm · · · · · · p0
. . . . . .

pm · · · · · · p0
qn · · · q0

. . . . . .
. . . . . .

qn · · · q0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (7.1)

It is the determinant, in suitable bases, of the linear map

An−1[x]×Am−1[x] → Am+n−1[x]
u, v 7→ up+ vq

where Ak[x] ⊂ A[x] is the sub-module of polynomials of degree at most k. If p
and q split into linear factors, their resultant may also be expressed in terms of
differences of their roots:

Res(p, q) = pnmq
m
n

∏
i,j

(αi − βj),
{
p = pm(x− α1) . . . (x− αm)
q = qn(x− β1) . . . (x− βn).

The specialisation property mentioned above follows from the definition (7.1):
if ϕ : A→ A′ is a ring morphism, the application of which to p and q keeps their
degrees unchanged, i.e., such that ϕ(pm) 6= 0 and ϕ(qn) 6= 0, then we have

Res(ϕ(p), ϕ(q)) = ϕ(Res(p, q)).

As a consequence, ϕ(Res(p, q)) vanishes when ϕ(p) and ϕ(q) share a common
factor. We have seen above an example of this phenomenon, with ϕ the canonical
projection from Z to Z/nZ.

The most common usage of the resultant concerns the case where the base
ring itself is a polynomial ring: p, q ∈ A[x] with A = K[a1, . . . , ak]. In particular,
given α1, . . . , αk ∈ K, let us consider the specialisation

ϕ : B[a1, . . . , ak] → K
q(a1, . . . , ak) 7→ q(α1, . . . , αk).

We see that the resultant Res(p, q) vanishes at (α1, . . . , αk) if and only if the
specialisations ϕ(p), ϕ(q) ∈ K[x] share a common factor, assuming that one of
the leading terms of p and q does not vanish in (α1, . . . , αk).

For example, the discriminant of p ∈ Q[x] of degree m is defined by

disc(p) = (−1)m(m−1)/2 Res(p, p′)/pm.

This definition generalises the classical discriminants of degree two and three
polynomials:
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sage: R.<a,b,c,d> = QQ[]; x = polygen(R); p = a*x^2+b*x+c
sage: p.resultant(p.derivative())
-a*b^2 + 4*a^2*c
sage: p.discriminant()
b^2 - 4*a*c
sage: (a*x^3 + b*x^2 + c*x + d).discriminant()
b^2*c^2 - 4*a*c^3 - 4*b^3*d + 18*a*b*c*d - 27*a^2*d^2

Since the discriminant of p is, up to a normalisation, the resultant of p and its
derivative, it vanishes if and only if p has a multiple root in C.

7.3.4 Galois Group
The Galois group of an irreducible polynomial p ∈ Q[x] is an algebraic object
which describes some of the “symmetries” of the roots of p. It is a central object in
the theory of algebraic equations. In particular, the equation p(x) = 0 is solvable
by radicals — i.e., its roots can be expressed from coefficients of p using the four
operations and the nth root — if and only if the Galois group of p is solvable.

Sage allows the computation of the Galois group of polynomials with rational
coefficients of moderate degree, and performs several operations on the obtained
groups. Both Galois theory and the group theory functionalities of Sage go beyond
the scope of this book. Let us simply apply without more explanations Galois’
theorem on the solvability by radicals. The following computation4 shows that
the roots of x5 − x− 1 cannot be expressed using radicals:

sage: x = polygen(QQ); G = (x^5 - x - 1).galois_group(); G
Transitive group number 5 of degree 5
sage: G.is_solvable()
False

It is one of the simplest examples of this situation, since polynomials of degree
less than or equal to 4 are always solvable by radicals, as well as obviously those
of the form x5 − a. By looking at the generators of G seen as a permutation
group, we recognise that G ' S5, which can be easily verified:

sage: G.gens()
[(1,2,3,4,5), (1,2)]
sage: G.is_isomorphic(SymmetricGroup(5))
True

7.4 Rational Functions
7.4.1 Construction and Basic Properties
The division of two polynomials (on an integral ring) produces a rational function.
Its parent is the fraction field of the polynomial ring, obtained with Frac(R):

4This computation requires a table of finite groups which is not in the default installation of
Sage, but we can upload and automatically install it with the command sage -i database_gap
(it might be needed to restart Sage after the installation).
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Rational functions

fraction field K(x) Frac(K['x'])
numerator r.numerator()

denominator r.denominator()
simplification (modifies r) r.reduce()

partial fraction decomposition r.partial_fraction_decomposition()
rational reconstruction of s mod m s.rational_reconstruct(m)

Truncated power series

ring A[[t]] PowerSeriesRing(A, 'x', default_prec=n)
ring A((t)) LaurentSeriesRing(A, 'x', default_prec=n)

coefficient [xk] f(x) f[k]
truncation x + O(x^n)
precision f.prec()

derivative, antiderivative (vanishes at 0) f.derivative(), f.integral()
usual operations

√
f , exp f , ... f.sqrt(), f.exp(), ...

reciprocal (f ◦ g = g ◦ f = x) g = f.reverse()
solution of y′ = ay + b a.solve_linear_de(precision, b)

Table 7.6 – Objects constructed from polynomials.

sage: x = polygen(RR); r = (1 + x)/(1 - x^2); r.parent()
Fraction Field of Univariate Polynomial Ring in x over Real
Field with 53 bits of precision
sage: r
(x + 1.00000000000000)/(-x^2 + 1.00000000000000)

We see that the simplification is not automatic. This is because RR is an inexact
ring, i.e., its elements are approximations of mathematical objects. The reduce
method puts the fraction in reduced form. It does not return a new object, but
modifies the existing fraction:

sage: r.reduce(); r
1.00000000000000/(-x + 1.00000000000000)

On an exact ring, in contrast, rational functions are automatically reduced.
The operations on rational functions are analogous to those on polynomials.

Those having a meaning in both cases (substitution, derivative, factorisation...)
may be used in the same manner. Table 7.6 enumerates some other useful methods.
The partial fraction decomposition and the rational reconstruction deserve some
explanations.

7.4.2 Partial Fraction Decomposition
Sage computes the partial fraction decomposition of a rational function a/b in
Frac(K[’x’]) from the factorisation of b in K[’x’]. It is therefore the partial
fraction decomposition on K. The result contains a polynomial part p and a list
of rational functions whose denominators are powers of irreducible factors of b:
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sage: R.<x> = QQ[]; r = x^10 / ((x^2-1)^2 * (x^2+3))
sage: poly, parts = r.partial_fraction_decomposition()
sage: poly
x^4 - x^2 + 6
sage: for part in parts: part.factor()
(17/32) * (x - 1)^-1
(1/16) * (x - 1)^-2
(-17/32) * (x + 1)^-1
(1/16) * (x + 1)^-2
(-243/16) * (x^2 + 3)^-1

We have thus obtained the partial fraction decomposition on the rationals

r = x10

(x2 − 1)2(x2 + 3) = x4−x2+6+
17
32

x− 1+
1
16

(x− 1)2−
17
32

x+ 1+
1
16

(x+ 1)2−
243
16

x2 + 3 .

This is also clearly the partial fraction decomposition of r on the real numbers.
However, on the complex numbers, the denominator of the last term is

not irreducible, hence the rational function can be further decomposed. We can
compute the partial fraction decomposition on the complex numbers numerically:

sage: C = ComplexField(15)
sage: Frac(C['x'])(r).partial_fraction_decomposition()
(x^4 - x^2 + 6.000, [0.5312/(x - 1.000), 0.06250/(x^2 - 2.000*x + 1.000)

,
4.385*I/(x - 1.732*I), (-4.385*I)/(x + 1.732*I),
(-0.5312)/(x + 1.000), 0.06250/(x^2 + 2.000*x + 1.000)])

We obtain the exact decomposition on C in the same manner, by replacing C by
QQbar. Doing the computation on AA, we would get the decomposition on the
reals, even when all real roots of the denominator are not rational.

7.4.3 Rational Reconstruction
As for integers in §6.1.3, the rational reconstruction also exists for polynomials
with coefficients in A = Z/nZ. Given m, s ∈ A[x], the command

sage: s.rational_reconstruct(m, dp, dq)

computes when possible polynomials p, q ∈ A[x] such that

qs ≡ p mod m, deg p ≤ dp, deg q ≤ dq.

For simplicity, let us restrict ourselves to the case where n is prime. Such a
relation with q and m coprime implies p/q = s in A[x]/〈m〉, which explains the
“rational reconstruction” name.

The rational reconstruction problem translates into a linear system on the
coefficients of p and q, and a simple dimension argument shows that a non-
trivial solution exists as soon as dp + dq ≥ degm− 1. A solution with q and
m coprime does not always exist (for example, the solutions of p ≡ qx mod x2

with deg p ≤ 0, deg q ≤ 1 are the constant multiples of (p, q) = (0, x)), but
rational_reconstruct looks rather for solutions q coprime to m.
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Padé Approximants. The case m = xn is called Padé approximant. A Padé
approximant of type (k, n− k) of a formal power series f ∈ K[[x]] is a rational
function p/q ∈ K(x) such that deg p ≤ k − 1, deg q ≤ n − k, q(0) = 1, and
p/q = f +O(xn). We then have p/q ≡ f mod xn.

Let us start with a symbolic example. The following commands compute a
Padé approximant of the series f =

∑∞
i=0 (i+ 1)2xi with coefficients in Z/101Z:

sage: A = Integers(101); R.<x> = A[]
sage: f6 = sum( (i+1)^2 * x^i for i in (0..5) ); f6
36*x^5 + 25*x^4 + 16*x^3 + 9*x^2 + 4*x + 1
sage: num, den = f6.rational_reconstruct(x^6, 1, 3); num/den
(100*x + 100)/(x^3 + 98*x^2 + 3*x + 100)

By expanding back into power series the rational function found, we see that
not only the terms correspond up the term in x5, but even the next term “is
correct”!

sage: S = PowerSeriesRing(A, 'x', 7); S(num)/S(den)
1 + 4*x + 9*x^2 + 16*x^3 + 25*x^4 + 36*x^5 + 49*x^6 + O(x^7)

Indeed, f itself is a rational function: we have f = (1 + x)/(1 − x)3. The
truncated expansion f6, together with bounds on the degrees of the numerator
and denominator, is enough to represent it without any ambiguity. From this
point of view, the computation of Padé approximants is the converse of the
series expansion of power series: it allows us to go back from this alternative
representation to the usual one as quotient of two polynomials.

An Analytic Example. Historically, Padé approximants do not come from
this kind of symbolic reasoning, but from the approximation theory of analytic
functions. Indeed, the Padé approximants of the series expansion of an analytic
function often approximate the function better than series truncations. When
the degree of the denominator is large enough, Padé approximants can even give
good approximations outside the convergence disc of the series. We sometimes
say that they “swallow the poles”. Figure 7.1, which shows the convergence of
the approximants of type (2k, k) of the tangent function around 0, illustrates this
phenomenon.

Although rational_reconstruct is restricted to polynomials on Z/nZ, it is
possible to use it to compute Padé approximants with rational coefficients, and
obtain that figure. The simplest way is to first perform the rational reconstruction
modulo a large enough prime:

sage: x = var('x'); s = tan(x).taylor(x, 0, 20)
sage: p = previous_prime(2^30); ZpZx = Integers(p)['x']
sage: Qx = QQ['x']

sage: num, den = ZpZx(s).rational_reconstruct(ZpZx(x)^10,4,5)
sage: num/den
(1073741779*x^3 + 105*x)/(x^4 + 1073741744*x^2 + 105)
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Figure 7.1 – The tangent function and some Padé approximants on [−2π, 2π].

then to lift the solution found. The following function lifts an element a from
Z/pZ into an integer of absolute value at most p/2.

sage: def lift_sym(a):
....: m = a.parent().defining_ideal().gen()
....: n = a.lift()
....: if n <= m // 2: return n
....: else: return n - m

We then get:

sage: Qx(map(lift_sym, num))/Qx(map(lift_sym, den))
(-10*x^3 + 105*x)/(x^4 - 45*x^2 + 105)

When the wanted coefficients are too large for this technique, we can perform the
computation modulo several primes, and apply the “Chinese Remainder Theorem”
to obtain a solution with integer coefficients, as explained in §6.1.4. Another
possibility is to compute a recurrence relation with constant coefficients which
is satisfied by the series coefficients. This computation is almost equivalent to a
Padé approximant (see Exercise 28), but the Sage function berlekamp_massey is
able to perform it on any field.

Let us make the preceding computation more automatic, by writing a func-
tion which directly computes the approximant with rational coefficients, under
favorable assumptions:

sage: def mypade(pol, n, k):
....: x = ZpZx.gen();
....: n,d = ZpZx(pol).rational_reconstruct(x^n, k-1, n-k)
....: return Qx(map(lift_sym, n))/Qx(map(lift_sym, d))

It then suffices to call plot on the results of this function (converted into elements
of SR, since plot is not able to draw directly the graph of an “algebraic” rational
function) to obtain the graph of Figure 7.1:
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sage: add(
....: plot(expr, -2*pi, 2*pi, ymin=-3, ymax=3,
....: linestyle=sty, detect_poles=True, aspect_ratio=1)
....: for (expr, sty) in [
....: (tan(x), '-'),
....: (SR(mypade(s, 4, 2)), ':' ),
....: (SR(mypade(s, 8, 4)), '-.'),
....: (SR(mypade(s, 12, 6)), '--') ])

The following exercises demonstrate two other classical applications of the
rational reconstruction.

Exercise 28. 1. Show that if (un)n∈N satisfies a linear recurrence with constant
coefficients, then the power series

∑
n∈N unz

n is a rational function. How would
you interpret the numerator and denominator?

2. Guess the next terms of the sequence

1, 1, 2, 3, 8, 11, 34, 39, 148, 127, 662, 339, 3056, 371, 14602,−4257, . . . ,

by using rational_reconstruct. Find again the result with the berlekamp_massey
function.

Exercise 29 (Cauchy interpolation). Find a rational function r = p/q ∈ F17(x)
such that r(0) = −1, r(1) = 0, r(2) = 7, r(3) = 5, with p of minimal degree.

7.5 Formal Power Series
A formal power series is a power series considered as a simple sequence of
coefficients, without considering convergence. More precisely, ifA is a commutative
ring, we call formal power series of indeterminate x with coefficients in A the
formal sums

∑∞
n=0 anx

n where (an) is any sequence of elements of A. Together
with the natural addition and multiplication operations

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(an + bn)xn,

( ∞∑
n=0

anx
n
)( ∞∑

n=0
bnx

n
)

=
∞∑
n=0

( ∑
i+j=n

aibj

)
xn,

the formal power series constitute a ring named A[[x]].
In a computer algebra system, these series are useful to represent analytic

functions for which we have no closed form. As always, the computer performs
some computations, but it is the user’s responsibility to give them a mathematical
meaning. In particular, she/he should make sure that the considered series are
convergent (if needed).

Formal power series also appear frequently in combinatorics, in the form of
generating series. We will see such an example in §15.1.2.
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7.5.1 Operations on Truncated Power Series
The ring Q[[x]] of formal power series is constructed by

sage: R.<x> = PowerSeriesRing(QQ)

or in short R.<x> = QQ[[]]5. The elements of A[[’x’]] are truncated power
series, i.e., objects of the form

f = f0 + f1 x+ · · ·+ fn−1 x
n−1 +O(xn).

They play the role of approximations of infinite “mathematical” series, much like
elements of RR are approximations of real numbers. The A[[’x’]] ring is thus an
inexact ring.

Each series has its own order of truncation6 and the precision automatically
follows through computations:

sage: R.<x> = QQ[[]]
sage: f = 1 + x + O(x^2); g = x + 2*x^2 + O(x^4)
sage: f + g
1 + 2*x + O(x^2)
sage: f * g
x + 3*x^2 + O(x^3)

Series with infinite precision do exist, they correspond exactly to polynomials:
sage: (1 + x^3).prec()
+Infinity

A default precision is used when it is necessary to truncate an exact result. It is
given at the ring creation, or afterwards with the set_default_prec method:

sage: R.<x> = PowerSeriesRing(Reals(24), default_prec=4)
sage: 1/(1 + RR.pi() * x)^2
1.00000 - 6.28319*x + 29.6088*x^2 - 124.025*x^3 + O(x^4)

As a consequence of the above, it is not possible to test the mathematical
equality between two series. This is an important difference between these objects
and the other classes of objects seen in this chapter. Sage thus considers two
elements of A[[’x’]] as equal as soon as they match up to the smallest of their
precisions:

sage: R.<x> = QQ[[]]
sage: 1 + x + O(x^2) == 1 + x + x^2 + O(x^3)
True

Warning: this implies that the test O(xˆ2) == 0 returns true.
The basic arithmetic operations on series work as for polynomials. We also

have some usual functions, for example f.exp() when f(0) = 0, as well as the
5Or from Q[x], by QQ[’x’].completion(’x’).
6In some sense, this is the main difference between a polynomial modulo xn and a series

truncated at order n: the operations on these two objects are analogous, but the elements of
A[[x]]/〈xn〉 have all the same “precision”.
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derivative and antiderivative functions. Hence, an asymptotic expansion when
x→ 0 of

1
x2 exp

(∫ x

0

√
1

1 + t
dt
)

is given by
sage: (1/(1+x)).sqrt().integral().exp() / x^2 + O(x^4)
x^-2 + x^-1 + 1/4 + 1/24*x - 1/192*x^2 + 11/1920*x^3 + O(x^4)

Here, only terms up to x3 appear in the result, since + O(xˆ4) explicitly asks to
truncate to order 4. However, the intermediate computations are performed to
the default precision 20, which we can check by omitting the O(xˆ4) term. To
get even more terms, we can increase the precision of intermediate computations.

This example also demonstrates that if f, g ∈ K[[x]] and g(0) = 0, the quotient
f/g yields an object of type formal Laurent series. Contrary to the Laurent series
in complex analysis, of the form

∑∞
n=−∞ anx

n, the formal Laurent series are sums
of the form

∑∞
n=−N anx

n, with a finite number of terms of negative exponent.
This restriction is mandatory for the product of two formal series: without it,
each product coefficient would be the sum of an infinite series.

7.5.2 Solutions of an Equation: Series Expansions
Given a differential equation whose exact solutions are too complex to compute or
to deal with, or simply which does not admit a closed-form solution, an alternative
is often to look for solutions in the form of series expansions. We usually first
determine solutions of the equation in the space of formal power series, and if
necessary we conclude using a convergence argument that the constructed series
solutions make sense analytically. Sage may be of great help for the first step.

Let us consider for example the differential equation

y′(x) =
√

1 + x2 y(x) + exp(x), y(0) = 1.

This equation has a unique formal power series solution, whose first terms might
be computed by

sage: (1+x^2).sqrt().solve_linear_de(prec=6, b=x.exp())
1 + 2*x + 3/2*x^2 + 5/6*x^3 + 1/2*x^4 + 7/30*x^5 + O(x^6)

Moreover, Cauchy’s theorem on the existence of solutions to linear differential
equations with analytic coefficients ensures that this series converges for |x| < 1:
its sum thus provides an analytic solution on the complex unit disc.

This approach is not limited to differential equations. The functional equation
exf(x) = f(x) is more complex, at least since it is not linear. Nevertheless, this is
a fixed-point equation, we can try to refine a (formal) solution iteratively:

sage: S.<x> = PowerSeriesRing(QQ, default_prec=5)
sage: f = S(1)
sage: for i in range(5):
....: f = (x*f).exp()
....: print(f)
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1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + O(x^5)
1 + x + 3/2*x^2 + 5/3*x^3 + 41/24*x^4 + O(x^5)
1 + x + 3/2*x^2 + 8/3*x^3 + 101/24*x^4 + O(x^5)
1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + O(x^5)
1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + O(x^5)

What happens here? The solutions of exf(x) = f(x) in Q[[x]] are the fixed
points of the transform Φ : f 7→ exf . If a sequence of iterates of the form Φn(a)
converges, its limit is necessarily a solution to the equation. Conversely, let us
write f(x) =

∑∞
n=0 fn x

n, and let us expand in series both sides:

∞∑
n=0

fn x
n =

∞∑
k=0

1
k!

(
x

∞∑
j=0

fj x
j

)k

=
∞∑
n=0

( ∞∑
k=0

1
k!

∑
j1,...,jk∈N

j1+···+jk=n−k

fj1fj2 . . . fjk

)
xn.

(7.2)

Ignoring the details of the formula, the important fact is that fn might be
computed from the preceding coefficients f0, . . . , fn−1, as we see by isolating the
coefficients on both sides. Hence, each iteration of Φ yields a new correct term.

Exercise 30. Compute the series expansion to order 15 of tan x near zero, from
the differential equation tan′ = 1 + tan2.

7.5.3 Lazy Power Series

The fixed-point phenomenon motivates the introduction of a new kind of formal
power series called lazy power series. They are not truncated series, but infinite
series; the “lazy” adjective means that coefficients are computed on demand only.
As a counterpart, we can only represent series whose coefficients are computable:
essentially, combinations of basic series and some solutions of equations for which
relations like (7.2) exist. For example, the series lazy_exp defined by

sage: L.<x> = LazyPowerSeriesRing(QQ)
sage: lazy_exp = x.exponential(); lazy_exp
O(1)

is an object which contains in its internal representation all the information needed
to compute the series expansion of expx to any order. Its output is initially O(1)
since no coefficient was computed so far. If we ask for the coefficient of x5, the
corresponding computation is performed, and the computed coefficients are stored
in memory:

sage: lazy_exp[5]
1/120
sage: lazy_exp
1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5 + O(x^6)
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Let us go back to the equation exf(x) = f(x) to see how it can be solved
with lazy series. We first try to reproduce the above computation in the ring
QQ[[’x’]]:

sage: f = L(1) # the constant lazy series 1
sage: for i in range(5):
....: f = (x*f).exponential()
....: f.compute_coefficients(5) # forces the computation
....: print(f) # of the first coefficients
1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5 + O(x^6)
1 + x + 3/2*x^2 + 5/3*x^3 + 41/24*x^4 + 49/30*x^5 + O(x^6)
1 + x + 3/2*x^2 + 8/3*x^3 + 101/24*x^4 + 63/10*x^5 + O(x^6)
1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + 49/5*x^5 + O(x^6)
1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + 54/5*x^5 + O(x^6)

The obtained expansions are of course the same as above7. However the value
of f at each iteration is now an infinite series, whose coefficients can be computed
on demand. All these intermediate series are kept in memory. The computation
of each one is automatically done at the required precision in order to yield, for
example, the coefficient of x7 in the last iterate when one asks for it:

sage: f[7]
28673/630

With the code of §7.5.2, accessing f[7] would have raised an error, since the
index 7 is larger than the truncation order of the series f.

However, the value returned by f[7] is the coefficient of x7 in the iterate
Φ5(1), and not in the solution! The power of lazy series is the possibility to
directly get the limit, by defining f itself as a lazy series:

sage: from sage.combinat.species.series import LazyPowerSeries
sage: f = LazyPowerSeries(L, name='f')
sage: f.define((x*f).exponential())
sage: f.coefficients(8)
[1, 1, 3/2, 8/3, 125/24, 54/5, 16807/720, 16384/315]

The iterative computation did “work” thanks to the relation (7.2). Under the hood,
Sage deduces from the recursive definition f.define((x*f).exponential()) a
similar formula, which enables it to compute coefficients by recurrence.

7.6 Computer Representation of Polynomials
A given mathematical object — the polynomial p, with coefficients inA—might be
encoded in very different ways on a computer. While the result of a mathematical
operation on p is clearly independent of the representation, the corresponding

7We observe however that Sage sometimes has incoherent conventions: the exp method
for truncated series is now called exponential, and compute_coefficients(5) computes the
coefficients up to order 5 included, whereas default_prec=5 gave series truncated after the
coefficient of x4.
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Sage objects might behave differently. The choice of representation impacts the
possible operations, the exact form of their results, and particularly the efficiency
of the computations.

Dense or Sparse Representation. Two principal ways exist for representing
polynomials. In a dense representation, the coefficients of p =

∑n
i=0 pi x

i are
stored in a table [p0, . . . , pn] indexed by the exponents. A sparse representation
only stores the non-zero coefficients: the polynomial is encoded by a set of pairs
exponent-coefficient (i, pi), stored in a list, or better, in a dictionary indexed by
the exponents (see §3.3.9).

For polynomials that really are dense, i.e., whose coefficients are mostly non-
zero, the dense representation uses less memory and enables faster computations.
It saves the encoding of the exponents and of the internal data structures of the
dictionary: it only stores what is strictly necessary, the coefficients. Moreover,
accessing an element and iterating on elements are faster in a table than in
a dictionary. Conversely, the sparse representation enables us to efficiently
compute with polynomials that we could not even store in memory with a dense
representation:

sage: R = PolynomialRing(ZZ, 'x', sparse=True)
sage: p = R.cyclotomic_polynomial(2^50); p, p.derivative()
(x̂ 562949953421312 + 1, 562949953421312*x̂ 562949953421311)

As shown by the preceding example, the representation is a characteristic of
the polynomial ring, chosen at its construction. The “dense” polynomial x ∈ Q[x]
and the “sparse” polynomial x ∈ Q[x] thus have different parents. The default
representation of univariate polynomials is dense. The option sparse=True of
PolynomialRing enables us to build a polynomial ring with sparse representation.

In addition, some details of the representation vary according to the kind
of coefficients. The same holds for the code used to perform basic operations.
Indeed, Sage provides a generic polynomial implementation which works on
any commutative ring, but also optimised variants for some particular types of
coefficients. These variants bring some additional features, and above all are
much more efficient than the generic version. They call for this purpose some
specialised external libraries, like flint or ntl in the case of Z[x].

To complete huge computations successfully, it is very important to work
whenever possible in polynomial rings with efficient implementations. The help
page output by p? for a polynomial p indicates which implementation it uses. The
choice of the implementation often depends on the base ring and the representation.
The implementation option of PolynomialRing enables us to choose a particular
implementation when several are possible.

Symbolic Expressions. The symbolic expressions discussed in Chapters 1
and 2 (i.e., the elements of SR) provide a third representation of polynomials.
They are a natural choice when a computation mixes polynomials and more
diverse expressions, as it is often the case in analysis. The flexibility they offer is
sometimes useful even in a fully algebraic context. For example, the polynomial
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A little bit of theory

To get the best out of fast operations on polynomials, it is good to have
an idea of their algorithmic complexity. We briefly discuss this for the reader
with some algorithmic knowledge. We limit ourselves to the case of dense
polynomials.

Additions, subtractions and other direct operations on coefficients are
performed in linear time with respect to the degrees of the considered
polynomials. Their practical efficiency thus depends essentially on the easy
access to the coefficients, and therefore on the internal data structure.

The critical operation is multiplication. Indeed, not only is this a basic
arithmetic operation, but other operations use algorithms whose complexity
depends essentially on that of multiplication. For example, given two poly-
nomials of degree at most n, we can compute their Euclidean division at the
cost of O(1) multiplications, or their gcd at that of O(logn) multiplications.

Good news: we know how to multiply polynomials in quasi-linear time.
More precisely, the best known complexity over any ring is O(n logn log logn)
operations in the base ring. It relies on generalisations of the famous
Schönhage-Strassen algorithm, which attains the same complexity for inte-
ger multiplication. By comparison, the method used by hand to multiply
polynomials requires of the order of n2 operations.

In practice, the fast multiplication algorithms are competitive for large
enough degrees, as well as corresponding methods for the division. The
libraries called by Sage for some kinds of coefficients use such advanced
algorithms: this explains why Sage is able to efficiently work with polynomials
of huge degree on some coefficient rings.

(x+ 1)1010 , once expanded, is dense, but it is not necessary (nor desirable!) to
expand it in order to differentiate it or evaluate it numerically.

Beware however: as opposed to algebraic polynomials, symbolic polynomials
(in SR) are not attached to a particular polynomial ring, and are not put in
canonical form. A given polynomial might have a lot of different forms, it is
the user’s responsibility to perform the needed conversions between them. In
the same vein, the SR domain groups together all symbolic expressions, without
any distinction between polynomials and other expressions, but we can explicitly
check whether a given symbolic expression f is polynomial in the variable x by
f.is_polynomial(x).
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Mathematics is the art of reducing any problem to linear
algebra.

William Stein

8
Linear Algebra

This chapter deals with exact and symbolic linear algebra, i.e., linear algebra
over rings specific to computer algebra, such as Z, finite fields, or polynomial
rings. Numerical linear algebra, based on fixed precision approximate arithmetic,
is presented in Chapter 13. We first present constructions on matrices and their
vector spaces together with basic operations (§8.1), then various computations on
these matrices, gathered in two groups: operations related to Gaussian elimination
and left equivalence transformations (§8.2.1-§8.2.2), and computations related to
eigenvalues, eigenspaces and similarity transformations (§8.2.3).

The reader may refer to the books of von zur Gathen and Gerhard [vzGG03],
and the Ph. D. thesis of Storjohann [Sto00] for further details on the notions
presented in this chapter.

8.1 Elementary Constructs and Manipulations

8.1.1 Spaces of Vectors and Matrices
As is the case for polynomials, vectors and matrices are handled as algebraic
objects belonging to a space. This is a vector space when the coefficients are
elements of a field, or a free module when the coefficients are elements of a ring.

The space M2,3(Z) and the vector space (F32)3 are constructed by:

sage: MS = MatrixSpace(ZZ,2,3); MS
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
sage: VS = VectorSpace(GF(3^2,'x'),3); VS
Vector space of dimension 3 over Finite Field in x of size 3^2
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Matrix space

construct MS = MatrixSpace(K, nrows, ncols) or MS = Mat(...)
construct (sparse matrix) MS = MatrixSpace(K, nrows, ncols, sparse = True)

base ring K MS.base_ring()
extending the ring MS.base_extend(B)
changing the ring MS.change_ring(B)
group generated MatrixGroup([A,B])

basis of the vector space MS.basis() or MS.gens()

Matrix constructs

zero matrix MS() or MS.zero() or zero_matrix(K,nrows,ncols)
matrix from coefficients MS([1,2,3,4]) or matrix(K,2,2,[1,2,3,4]) or

matrix(K,[[1,2],[3,4]])
identity matrix MS.one() or MS.identity_matrix() or

identity_matrix(K,n)
random matrix MS.random_element() or

random_matrix(K,nrows,ncols)
Jordan block jordan_block(x,n)
block matrix block_matrix([A,1,B,0]) or block_diagonal_matrix(A,B)

Elementary manipulations

accessing a coefficient A[2,3] or A[2][3]
last row, third column A[-1,:], A[:,2]
first four even columns A[:,0:8:2]

submatrices A[3:4,2:5], A[:,2:5], A[:4,2:5]
A.matrix_from_rows([1,3])
A.matrix_from_columns([2,5])
A.matrix_from_rows_and_columns([1,3],[2,5])
A.submatrix(i,j,nrows,ncols)

row concatenation A.stack(B)
column concatenation A.augment(B)

Table 8.1 – Constructs for matrices and their spaces.

A generating family for these spaces, namely the canonical basis, is obtained
by the methods MS.gens() or MS.basis().

sage: B = MatrixSpace(ZZ,2,3).basis()
sage: list(B)[( 1 0 0

0 0 0
)
,

( 0 1 0
0 0 0

)
,

( 0 0 1
0 0 0

)
,

( 0 0 0
1 0 0

)
,

( 0 0 0
0 1 0

)
,

( 0 0 0
0 0 1

)]
One can conveniently access its elements by row and column number:

sage: B[1,2](
0 0 0
0 0 1

)
Matrix Groups. One can also define groups and subgroups in the space of
matrices. The general linear group of degree n over a field K, denoted by
GLn(K), is the group consisting of all invertible n×n matrices inMn,n(K). It is
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constructed in Sage with the command GL(n,K). The special linear group SLn(K),
consisting of the elements of GLn(K) with determinant one, is constructed with
the command SL(n,K).

The construction MatrixGroup([A,B,...]) returns the group generated by
the matrices in the list argument, all of which need to be invertible.

sage: A = matrix(GF(11), 2, 2, [1,0,0,2])
sage: B = matrix(GF(11), 2, 2, [0,1,1,0])
sage: MG = MatrixGroup([A,B])
sage: MG.cardinality()
200
sage: identity_matrix(GF(11),2) in MG
True

8.1.2 Vector and Matrix Construction
Matrices and vectors can naturally be generated as elements of their space, by
providing the list of their coefficients. For matrices, they are listed in a row major
mode:

sage: MS = MatrixSpace(ZZ,2,3); A = MS([1,2,3,4,5,6]); A(
1 2 3
4 5 6

)
The empty constructor MS() returns the zero matrix, and so does the method

MS.zero(). Several specialised constructors produce the most common matrices,
as for example random_matrix, identity_matrix, jordan_block (see Table 8.1).
In particular, one can construct matrices and vectors using the matrix and
vector constructors, without having to construct the related space beforehand.
By default, a matrix is built over the ring of integers Z and has dimension 0×0.

sage: a = matrix(); a.parent()
Full MatrixSpace of 0 by 0 dense matrices over Integer Ring

Of course, one can also specify the coefficient domain and the dimensions, to
form a zero matrix or a matrix with prescribed coefficients provided in a list.

sage: a = matrix(GF(8,'x'),3,4); a.parent()
Full MatrixSpace of 3 by 4 dense matrices over Finite Field
in x of size 2^3

The constructor matrix also accepts as argument objects that have a natural
transformation into a matrix. For instance, it can be used to generate the
adjacency matrix of a graph, with coefficients in Z.

sage: g = graphs.PetersenGraph()
sage: m = matrix(g); m; m.parent()
[0 1 0 0 1 1 0 0 0 0]
[1 0 1 0 0 0 1 0 0 0]
[0 1 0 1 0 0 0 1 0 0]
[0 0 1 0 1 0 0 0 1 0]
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[1 0 0 1 0 0 0 0 0 1]
[1 0 0 0 0 0 0 1 1 0]
[0 1 0 0 0 0 0 0 1 1]
[0 0 1 0 0 1 0 0 0 1]
[0 0 0 1 0 1 1 0 0 0]
[0 0 0 0 1 0 1 1 0 0]
Full MatrixSpace of 10 by 10 dense matrices over Integer Ring

Block Matrices. The function block_matrix allows to define a matrix by
blocks from several submatrices.

sage: A = matrix([[1,2],[3,4]])
sage: block_matrix([[A,-A],[2*A, A^2]])

1 2 −1 −2
3 4 −3 −4
2 4 7 10
6 8 15 22


By default, this structure is square by blocks but the number of block rows or

columns can be specified by the optional arguments nrows and ncols respectively.
Whenever it makes sense, a scalar coefficient, such as 0 or 1, is interpreted as a
block, namely a zero block or the identity block, with conforming dimensions.

sage: A = matrix([[1,2,3],[4,5,6]])
sage: block_matrix([1,A,0,0,-A,2], ncols=3)

1 0 1 2 3 0 0
0 1 4 5 6 0 0
0 0 −1 −2 −3 2 0
0 0 −4 −5 −6 0 2


In the special case of block diagonal matrices, the list of the diagonal blocks

is simply passed to the constructor block_diagonal_matrix.

sage: A = matrix([[1,2,3],[0,1,0]])
sage: block_diagonal_matrix(A, A.transpose())

1 2 3 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 2 1
0 0 0 3 0


The block structure is only a display feature and Sage treats the matrix as

any other matrix. This display mode can be disabled by providing the argument
subdivide=False to the block_matrix constructor.

8.1.3 Basic Manipulations and Arithmetic on Matrices
Indexing and Accessing Coefficients. Coefficients and submatrices are
accessed in a unified way through the square bracket operator A[i,j], following
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the usual Python conventions. Row and column indices i and j can be integers
(in order to access a coefficient) or intervals of the form 1:3 (recall that indices
are zero-based in Python and intervals are always inclusive on their lower end and
exclusive on their upper end). The interval “:” without bounds corresponds to
the entirety of the possible indices in the dimension considered. Notation a:b:k
lists all indices between a and b− 1 by steps of k. Lastly, negative indices are also
valid and allow one to iterate from the end of the index space. Thus A[-2,:]
refers to the second to last row of matrix A. These access patterns to submatrices
are available for both read and write operations. For instance, a given column
can be modified as follows:

sage: A = matrix(3,3,range(9))
sage: A[:,1] = vector([1,1,1]); A 0 1 2

3 1 5
6 1 8


The step increment k can also be negative, in order to iterate in decreasing

order.

sage: A[::-1], A[:,::-1], A[::2,-1] 6 1 8
3 1 5
0 1 2

 ,

 2 1 0
5 1 3
8 1 6

 ,

(
2
8

)

Extracting a Submatrix. In order to extract a submatrix from a list of
rows or column indices, not necessarily contiguous, one can use the methods
A.matrix_from_rows, A.matrix_from_columns or in the more general setting
the method A.matrix_from_rows_and_columns.

sage: A = matrix(ZZ,4,4,range(16)); A
0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15


sage: A.matrix_from_rows_and_columns([0,2,3],[1,2]) 1 2

9 10
13 14


Alternatively, when the row and column indices are contiguous, one can also

use the method A.submatrix(i,j,m,n) forming the submatrix of dimension
m× n whose upper left coefficient is at position (i, j) in A.
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Basic operations

transpose, conjugate A.transpose() , A.conjugate()
scalar product a*A

sum, product, k-th power, inverse A + B, A * B, Aˆk, Aˆ-1 or ˜A

Table 8.2 – Basic operations and matrix arithmetic.

Embedding and Extension. The method base_extend of a matrix space
makes it possible to embed a matrix space into another matrix space with the
same dimensions but over an extension of the base ring. This operation is however
only valid for a field or a ring extension. In order to change the ring of a matrix
space, following a ring morphism (when it exists), one uses instead the method
change_ring.

sage: MS = MatrixSpace(GF(3),2,3)
sage: MS.base_extend(GF(9,'x'))
Full MatrixSpace of 2 by 3 dense matrices over Finite Field
in x of size 3^2
sage: MS = MatrixSpace(ZZ,2,3)
sage: MS.change_ring(GF(3))
Full MatrixSpace of 2 by 3 dense matrices over Finite Field of size 3

Mutability and Caching. By default, matrix objects are mutable, which
means that one can modify their members (namely their coefficients) after their
construction. In order to protect the matrix against modification, one can make
it immutable with the function A.set_immutable(). It is then still possible to
create mutable copies of this matrix with the function copy(A). Remark that the
caching mechanism for the computed results, such as the rank, the determinant,
etc., is always active, regardless of the mutability status.

8.1.4 Basic Operations on Matrices
Arithmetic operations on matrices are done with the usual operators +,-,*,ˆ.
The inverse of a matrix A is obtained equivalently by Aˆ-1 or ˜A. For a scalar a
and a matrix A, the operation a*A corresponds to the scalar multiplication of the
matrix space. For any other operation where a scalar a is provided in place of
a matrix (as for instance in the operation a+A), this scalar is interpreted as the
corresponding scalar matrix aIn if a 6= 0 if dimensions permit it. Elementwise
product of two matrices is achieved by the method elementwise_product.

8.2 Matrix Computations
In linear algebra, matrices are typically used to represent families of vectors,
systems of linear equations, linear transformations, or vector subspaces. Conse-
quently, computing properties such as the rank of a family of vectors, the solution
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to a linear system, the eigenspaces of a linear transformation or the dimension of
a subspace all boil down to operations on the corresponding matrices that will
reveal the property.

These transformations most often correspond to changes of basis, which from
the matrix point of view translate into equivalence transformations: B = PAQ−1,
where P and Q are invertible matrices. Two matrices are equivalent if such a
transformation from one to another exists. One can then form equivalence classes
for this relation and define normal forms that characterise each equivalence class
in a unique manner. In the following, we will present most matrix computations
in Sage, from the viewpoint of two instances of these transformations:

• The left equivalence transformations, of the form B = UA, revealing
characteristic properties for families of vectors, such as their rank (the
number of linearly independent vectors), the determinant (the volume of the
parallelepiped formed by the family of vectors), the rank profile (the first set
of vectors forming a basis of the space spanned by the family)... Gaussian
elimination is the key tool for these transformations and the reduced echelon
form is the corresponding normal form (or the Hermite form over Z).

• Similarity transformations, of the form B = UAU−1, which reveal character-
istic properties of the matrices representing endomorphisms, like eigenvalues,
eigenspaces, minimal and characteristic polynomials... The Jordan or Frobe-
nius form, according to the underlying domain, will be normal forms for
these transformations.

The Gram-Schmidt orthogonalisation process leads to another decomposition
based on left equivalence transformations, changing a matrix into a set of orthog-
onal vectors.

8.2.1 Gaussian Elimination, Echelon Form

Gaussian Elimination and Left Equivalence. Gaussian elimination is a
building block operation in computational linear algebra, as it gives access to a
matrix representation, a product of triangular factors, which is both better suited
for computations, e.g., solving linear systems, and which reveals fundamental
properties such as the rank, the rank profile, the determinant, etc. The basic
operations used to define Gaussian elimination are the elementary row operations:

• permuting two rows: Li ↔ Lj ,

• adding a multiple of a row to another: Li ← Li + sLj .

From a matrix point of view, these transformations correspond to the left mul-
tiplication by respectively a transposition matrix Ti,j and by a transvection
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Gaussian elimination and applications

row transvection add_multiple_of_row(i,j,s)
column transvection add_multiple_of_column(i,j,s)

row, column transposition swap_rows(i1,i2), swap_columns(j1,j2)
reduced row echelon form, immutable echelon_form

reduced row echelon form, in-place echelonize
invariant factors elementary_divisors

Smith normal form smith_form
determinant, rank det, rank
minors of order k minors(k)

column, row rank profile pivots, pivot_rows
left-hand side system solving (xtA = bt) b/A or A.solve_left(b)
right-hand side system solving (Ax = b) A\b or A.solve_right(b)

image space image
left kernel kernel or left_kernel

right kernel right_kernel
kernel in the base ring integer_kernel

Spectral decomposition

minimal polynomial minimal_polynomial or minpoly
characteristic polynomial characteristic_polynomial or charpoly

Krylov iterates on the left-hand side maxspin(v)
eigenvalues eigenvalues

left, right eigenvectors eigenvectors_left, eigenvectors_right
left, right eigenspaces eigenspaces_left, eigenspaces_right

diagonalisation eigenmatrix_left, eigenmatrix_right
Jordan block Ja,k jordan_block(a,k)

Table 8.3 – Matrix computations.

matrix Ci,j,s defined by:

Ti,j =

i j

1
. . .

0 1
. . .

1 0
. . .

1


, Ci,j,s =



1
. . .

1 s
. . .

1
. . .


i

j

.

These matrices all have determinant 1 or −1. As a consequence, multiplying on
the left by any product of these matrices, is a volume preserving change of basis,
namely preserving the determinant (up to the sign). In Sage, a transvection is
achieved by the method add_multiple_of_row(i,j,s), and a transposition by
the method swap_rows(i,j).
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For a given column vector x =

x1
...
xm

 whose k-th coefficient is invertible, the

Gauss transform is the composition of the transvections Ci,k,`i for i = k+ 1 . . .m,
with `i = − xi

xk
(the order is irrelevant, since they all commute with each other).

The corresponding matrix is the following:

Gx,k = Ck+1,k,`k+1 × · · · × Cm,k,`m =



1
. . .

1

`k+1
. . .

`k+2
. . .

... . . .
`m 1


k

.

The effect of a Gauss transform Gx,k is to eliminate the coefficients of the
vector below the pivot xk.

Gx,k



x1
...
xk
xk+1
...
xm


=



x1
...
xk
0
...
0


.

For an m×n matrix A = [ai,j ], the Gaussian elimination algorithm then proceeds
iteratively, from the leftmost column to the rightmost column. Assuming that
the k − 1 first columns have already been processed, generating p ≤ k − 1 pivots,
the k-th column is then treated as follows:

• find the first invertible coefficient ai,k in the column Ck on a row i > p. It
is the pivot.

• If no pivot can be found, move on to the next column.

• Apply the transposition Ti,p+1 on the rows of the matrix, to place the pivot
at position (p+ 1, k).

• Apply the Gauss transform Gx,p+1, where x is the new k-th column Ck.

This algorithm transforms the matrix A into an upper triangular matrix. More
precisely, it will have an echelon form: the leading coefficient of each non-zero row
is to the right of that of the preceding row, and all zero rows are on the bottom
part of the matrix. The following example traces the execution of this algorithm
on a 4× 3 matrix.

sage: a = matrix(GF(7),4,3,[6,2,2,5,4,4,6,4,5,5,1,3]); a
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6 2 2
5 4 4
6 4 5
5 1 3


sage: u = copy(identity_matrix(GF(7),4)); u[1:,0] = -a[1:,0]/a[0,0]
sage: u, u*a


1 0 0 0
5 1 0 0
6 0 1 0
5 0 0 1

 ,


6 2 2
0 0 0
0 2 3
0 4 6




sage: v = copy(identity_matrix(GF(7),4)); v.swap_rows(1,2)
sage: b = v*u*a; v, b


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,


6 2 2
0 2 3
0 0 0
0 4 6




sage: w = copy(identity_matrix(GF(7),4))
sage: w[2:,1] = -b[2:,1]/b[1,1]; w, w*b


1 0 0 0
0 1 0 0
0 0 1 0
0 5 0 1

 ,


6 2 2
0 2 3
0 0 0
0 0 0




Gauss-Jordan Elimination. The Gauss-Jordan transformation is similar to
the Gauss transformation, simply adding to Gx,k the transvections corresponding
to the rows of index i < k; this has the effect of eliminating all coefficients, above
and below the pivot. If in addition each row is divided by its pivot, this leads to
the so called reduced echelon form or Gauss-Jordan form. It is a normal form:
for every equivalence class, there is a unique such reduced echelon form.

Definition. A matrix is in reduced echelon form if:

• all zero rows are at the bottom,

• the leading coefficient of every non-zero row, called a pivot, is a 1 and is to
the right of the pivot of the row above,

• pivots are the only non-zero elements in their column.

Theorem. For every m× n matrix A over a field, there is a unique m× n
matrix R in reduced echelon form and an invertible m×m matrix U such that
UA = R.
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In Sage, the reduced echelon form is obtained by the methods echelonize
and echelon_form. The former replaces the input matrix by its reduced echelon
form, while the latter returns an immutable matrix without modifying the input
matrix.

sage: A = matrix(GF(7),4,5,[4,4,0,2,4,5,1,6,5,4,1,1,0,1,0,5,1,6,6,2])
sage: A, A.echelon_form()


4 4 0 2 4
5 1 6 5 4
1 1 0 1 0
5 1 6 6 2

 ,


1 0 5 0 3
0 1 2 0 6
0 0 0 1 5
0 0 0 0 0




Most variants of the Gaussian elimination algorithm yield a matrix decom-
position of great interest for computations: decompositions of the form A = LU
for generic matrices, A = LUP for regular matrices, A = LSP,LQUP,PLUQ
for matrices with arbitrary rank. In these decompositions, the L matrices are
lower triangular (with zeros above the main diagonal), with a diagonal of ones,
the U matrices are upper triangular (with zeros below the main diagonal) with a
diagonal of invertible elements, and P and Q are permutation matrices. Although
these decompositions are less expensive to compute than the reduced echelon
form (nearly 2

3n
3 against 2n3 for an n× n full rank matrix), they do not produce

a normal form.

Echelon Form over a Euclidean Ring. Over a Euclidean ring, non-zero
coefficients are not necessarily invertible while only the invertible ones can be
chosen as pivots in the course of Gaussian elimination. Hence some non-zero
columns may not contain any pivot, and elimination would no longer be possible. It
is however still possible to define a unimodular transformation (whose determinant
is invertible) eliminating the leading coefficient in a row with that of another row,

thanks to the extended Euclidean algorithm. Let A =
[
a ∗
b ∗

]
and g = gcd(a, b).

Let u and v be the Bézout coefficients computed with the extended Euclidean
algorithm applied to a and b (such that g = ua+ vb), and let s = −b/g, t = a/g
such that [

u v
s t

] [
a ∗
b ∗

]
=
[
g ∗
0 ∗

]
.

This transformation is unimodular since det
(
u v
s t

)
= 1.

Moreover, as in the Gauss-Jordan elimination, it is also always possible to add
multiples of the pivot row to the rows above it in order to reduce the coefficients
in the pivot column modulo the pivot g. When iterated over all columns of the
matrix, this operation produces the Hermite normal form.

Definition. A matrix is in Hermite normal form if:

• its zero rows are at the bottom,

• the leading coefficient of each non-zero row, called the pivot, is to the right
of the pivot of the preceding row,
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• all coefficients above a pivot are reduced modulo the pivot.
Theorem. For any m× n matrix A over a Euclidean ring, there is a unique

m× n matrix H in Hermite form and an m×m unimodular matrix U , such that
UA = H.

Over a field, the Hermite form coincides with the reduced echelon form. Indeed
all pivots are then invertible, each non-zero row can be divided by its pivot, making
this pivot equal to one. Then reducing the coefficients above each pivot modulo
one, means setting them to zero, which produces a reduced echelon form. In
Sage, there is therefore a unique method, echelon_form, which either returns
the Hermite form or the reduced echelon form depending whether the coefficient
domain is a Euclidean ring or a field.

For instance, a matrix with integer coefficients yields the following two distinct
reduced echelon forms depending on whether the base ring is Z or Q.

sage: a = matrix(ZZ, 4, 6, [2,1,2,2,2,-1,1,2,-1,2,1,-1,2,1,-1,\
....: -1,2,2,2,1,1,-1,-1,-1]); a.echelon_form()

1 2 0 5 4 −1
0 3 0 2 −6 −7
0 0 1 3 3 0
0 0 0 6 9 3


sage: a.base_extend(QQ).echelon_form()

1 0 0 0 5
2

11
6

0 1 0 0 −3 − 8
3

0 0 1 0 − 3
2 − 3

2
0 0 0 1 3

2
1
2


For matrices over Z, the Hermite form can also be obtained with the method

hermite_form. With both methods, the transformation matrix U such that
UA = H is also returned when the option transformation=True is passed.

sage: A = matrix(ZZ,4,5,[4,4,0,2,4,5,1,6,5,4,1,1,0,1,0,5,1,6,6,2])
sage: H, U = A.echelon_form(transformation=True); H, U 1 1 0 0 2

0 4 −6 0 −4
0 0 0 1 −2
0 0 0 0 0

 ,

 0 1 1 −1
0 −1 5 0
0 −1 0 1
1 −2 −4 2


Invariant Factors and the Smith Normal Form. When eliminating
further the Hermite normal form, using unimodular right transformations (acting
on columns) one can then reach a diagonal canonical form, named the Smith
normal form. Its diagonal coefficients are the elementary divisors of the matrix.
They are totally ordered under the divisibility relation: si | si+1.

Theorem. For any m× n matrix A with coefficients over a principal ideal
ring, there exist unimodular matrices U and V of dimensions m×m and n× n
respectively, and a unique m× n diagonal matrix S such that S = UAV . The
coefficients si = Si,i for i ∈ {1, . . . ,min(m,n)} are the elementary divisors of A
and satisfy si | si+1,∀i < min(m,n).
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In Sage, the method elementary_divisors returns the list of elementary
divisors. One can also compute directly the Smith normal form, together with
the transformation matrices U and V , with the smith_form method.

sage: A = matrix(ZZ, 4, 5,\
....: [-1,-1,-1,-2,-2,-2,1,1,-1,2,2,2,2,2,-1,2,2,2,2,2])
sage: S,U,V = A.smith_form(); S,U,V
 1 0 0 0 0

0 1 0 0 0
0 0 3 0 0
0 0 0 6 0

 ,

 1 0 0 0
0 0 1 0
−2 1 0 0

0 0 −2 −1

 ,


0 −2 −1 −5 0
1 0 1 −1 −1
0 0 0 0 1
−1 2 0 5 0

0 −1 0 −2 0




sage: A.elementary_divisors()
[1, 1, 3, 6]
sage: S == U*A*V
True

Rank, Rank Profile and Pivots. Gaussian elimination reveals many matrix
invariants, such as the rank, the determinant (computed as the product of the
pivots). These values are accessible with the methods det and rank. They are
cached and therefore are not recomputed when the method is called once again.

More generally, the notion of rank profile is of interest when considering the
matrix as a sequence of vectors.

Definition. The column rank profile of an m× n matrix A of rank r is the
lexicographically minimal sequence of r indices of linearly independent columns
in A.

The column rank profile can be read directly off the reduced row echelon form,
as the sequence of column indices of the pivots. It is obtained by the method
pivots. When the reduced row echelon form has already been computed, the
column rank profile is stored in cache and can be obtained with no additional
computation.

The row rank profile is defined similarly, considering the matrix as a sequence
of m row vectors. It is obtained by the method pivot_rows. It is equivalent to
the column rank profile of the transposed matrix.

sage: B = matrix(GF(7),5,4,[4,5,1,5,4,1,1,1,0,6,0,6,2,5,1,6,4,4,0,2])
sage: B.transpose().echelon_form() 1 0 5 0 3

0 1 2 0 6
0 0 0 1 5
0 0 0 0 0


sage: B.pivot_rows()
(0, 1, 3)
sage: B.transpose().pivots() == B.pivot_rows()
True
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8.2.2 Linear System Solving, Image and Nullspace Basis
Linear System Solving. A linear system of equations can be represented
by a matrix A and a right-hand side or a left-hand side vector b for systems
of the form Ax = b or xtA = bt respectively. The methods solve_right and
solve_left solve these systems. One can alternatively use the operators A\b
and b/A. When the system is given by a matrix over a ring, the resolution is
systematically performed over the fraction field of this ring (e.g., Q for the ring
Z or K(X) for K[X]). We will see later on how to solve the system over the
base ring. The right-hand side in the system equality can be either a vector or
a matrix (the latter corresponding to the resolution of several systems with the
same matrix).

The system’s matrix can be rectangular and the system may have a unique
solution, no solution or an infinite number of solutions. In the latter case,
the solve methods return one of these solutions, zeroing out the coefficients
corresponding to linearly dependent columns in the system.

sage: R.<x> = PolynomialRing(GF(5),'x')
sage: A = random_matrix(R,2,3); A(

3x2 + x x2 + 2x 2x2 + 2
x2 + x+ 2 2x2 + 4x+ 3 x2 + 4x+ 3

)
sage: b = random_matrix(R,2,1); b(

4x2 + 1
3x2 + 2x

)
sage: A.solve_right(b)

4x3+2x+4
3x3+2x2+2x
3x2+4x+3
x3+4x2+4x

0


sage: A.solve_right(b) == A\b
True

Image and Kernel. Viewed as a linear transformation Φ, an m× n matrix A
defines two subspaces of Km and Kn, respectively the image and the kernel of Φ.

The image is the set of all vectors in Km which are a linear combination of
the columns of A. It is given by the method image, returning a vector space,
with a basis in reduced echelon form.

The kernel is the subspace of Kn formed by all vectors x satisfying Ax =
0. A basis of this subspace is useful for describing the set of solutions of an
underdetermined linear system, having an infinite number of solutions: if x is a
solution of Ax = b and V is the kernel of A, then x+ V is the set of all solutions
to the system. This set is computed by the method right_kernel returning
a vector space with a basis in reduced echelon form. The left kernel is defined
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similarly as the set of vectors x ∈ Km such that xtA = 0, which is also the right
kernel of the transposed matrix of A. It is returned by the method left_kernel.
By convention the method kernel returns the left kernel and the bases are given
as matrices of row vectors.

sage: a = matrix(QQ,3,5,[2,2,-1,-2,-1,2,-1,1,2,-1/2,2,-2,-1,2,-1/2])
sage: a.image()
Vector space of degree 5 and dimension 3 over Rational Field
Basis matrix:
[ 1 0 0 1/4 -11/32]
[ 0 1 0 -1 -1/8]
[ 0 0 1 1/2 1/16]
sage: a.right_kernel()
Vector space of degree 5 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 0 -1/3 8/3]
[ 0 1 -1/2 11/12 2/3]

The notion of kernel extends naturally to the case where coefficients no longer
belong to a field, but a ring; it then has the structure of a free module. In
particular, for a matrix defined over the fraction field of an integral ring, the
kernel in the base ring is obtained with the method integer_kernel. For instance,
the kernel of a matrix over Z, embedded in the vector space over the field Q can
either be the Q-vector subspace of Qm or a free Z-submodule of Zm.

sage: a = matrix(ZZ,5,3,[1,1,122,-1,-2,1,-188,2,1,1,-10,1,-1,-1,-1])
sage: a.kernel()
Free module of degree 5 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1 979 -11 -279 811]
[ 0 2079 -22 -569 1488]
sage: b = a.base_extend(QQ)
sage: b.kernel()
Vector space of degree 5 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -121/189 -2090/189 6949/63]
[ 0 1 -2/189 -569/2079 496/693]
sage: b.integer_kernel()
Free module of degree 5 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1 979 -11 -279 811]
[ 0 2079 -22 -569 1488]

8.2.3 Eigenvalues, Jordan Form and Similarity
Transformation

A square matrix A is the representation of a linear operator, an endomorphism,
in a given basis. Any change of basis corresponds to a similarity transformation
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of the form B = U−1AU . The matrix B represents the linear operator in the new
basis and the two matrices A and B are then similar. The properties of the linear
operator, which are independent of the basis of representation, are thus revealed
by the study of the similarity invariants of the matrix, namely its properties that
remain invariant under similarity.

Among these invariants, the most elementary are the rank and the determinant.
Indeed, since the matrices U and U−1 are invertible, the rank of U−1AU is the rank
of A. Moreover, det(U−1AU) = det(U−1) det(A) det(U) = det(U−1U) det(A) =
det(A). Similarly, the characteristic polynomial of the matrix A, defined as
χA(x) = det(xId−A) is also invariant under similarity transformation:

det(xId− U−1AU) = det(U−1(xId−A)U) = det(xId−A).

Consequently, the characteristic values of a matrix, defined as the roots of its
characteristic polynomial in its splitting field, are thus also similarity invariants.

By definition, a scalar λ is an eigenvalue of a matrix A if there exists a non-zero
vector u such that Au = λu. The eigenspace associated with an eigenvalue λ
is the set of all vectors u verifying Au = λu. It is a linear subspace defined by
Eλ = Ker(λId−A).

Eigenvalues coincide with characteristic values:

det(λId−A) = 0⇔ dim(Ker(λId−A)) ≥ 1⇔ ∃u 6= 0, λu−Au = 0.

These two points of view respectively correspond to the algebraic and the
geometric approach to eigenvalues. The geometric viewpoint considers the action
of the linear operator A on vectors in the ambient space with more precision than
in the algebraic viewpoint. In particular, they differ in the notion of multiplicity
of an eigenvalue: the algebraic multiplicity is the multiplicity of the root in the
characteristic polynomial while the geometric multiplicity is the dimension of the
eigenspace associated to the eigenvalue. When the matrix is diagonalisable, these
notions are equivalent, but otherwise the geometric multiplicity is less than or
equal to the algebraic multiplicity.

The geometric point of view gives finer details on the structure of the matrix.
It also helps designing efficient algorithms to compute eigenvalues, eigenvectors
and the characteristic and minimal polynomials.

Cyclic Invariant Subspace and Frobenius Normal Form. Let A be an
n×n matrix over a field K and u ∈ Kn a vector. The vectors u,Au,A2u, . . . Anu,
called the Krylov sequence, are linearly dependent (as it is a set of n+ 1 vectors
of dimension n). Let d be the first index such that Adu is linearly dependent with
its predecessors u,Au, . . . , Ad−1u. We can write this linear dependence relation
as

Adu =
d−1∑
i=0

αiA
iu.

The polynomial ϕA,u(x) = xd −
∑d−1
i=0 αix

i, satisfying the relation ϕA,u(A)u = 0
is therefore a monic polynomial annihilating the Krylov sequence, of minimal
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degree. It is named the minimal polynomial of the vector u (with respect to the
matrix A). The set of all annihilating polynomials of u forms an ideal of K[X],
generated by ϕA,u.

The minimal polynomial of the matrix A is defined as the least degree monic
polynomial annihilating the matrix A: ϕA(A) = 0. In particular, applying the
vector u to the right in this equation shows that ϕA is annihilating the Krylov
sequence for u. It is therefore necessarily a multiple of the minimal polynomial
of u. In addition, one can prove (see Exercise 31) that there always exists a vector
u such that

ϕA,u = ϕA. (8.1)

When the vector u is chosen at random, the probability that it satisfies Equa-
tion (8.1) increases with the size of the field (one shows that it is at least 1− n

|K| ).
Exercise 31. We will show that there always exists a vector u whose minimal

polynomial coincides with the minimal polynomial of the matrix.

1. Let (e1, . . . , en) be a basis of the vector space. Show that ϕA is equal to the least
common multiple of the ϕA,ei for all 1 ≤ i ≤ n.

2. In the case where ϕA is an irreducible polynomial raised to some power, show
that there is an index i0 such that ϕA = ϕA,ei0 .

3. Show that if the minimal polynomials ϕi = ϕA,ei and ϕj = ϕA,ej of the vectors
ei and ej are coprime, then ϕA,ei+ej = ϕiϕj .

4. Show that if ϕA = P1P2 where P1 and P2 are coprime, then there exist two vectors
x1 6= 0 and x2 6= 0 such that Pi is the minimal polynomial of xi for i = 1, 2.

5. Conclude using the factorisation of ϕA in irreducible factors ϕA = ϕm1
1 . . . ϕ

mk
k .

6. Illustration: let A =


0 0 3 0 0
1 0 6 0 0
0 1 5 0 0
0 0 0 0 5
0 0 0 1 5

 be a matrix over GF(7). Compute the

degrees of the minimal polynomial of A, of the minimal polynomials of the vectors
u = e1 and v = e4 of the canonical basis, and of the vector u+ v. One can use
the method maxspin(u) applied to the transpose of the matrix A, returning the
maximal sequence of linearly independent Krylov iterates of the vector u.

Let P = xk +
∑k−1
i=0 αix

i be a monic polynomial of degree k. The companion
matrix associated with the polynomial P is the k × k matrix

CP =


0 −α0
1 −α1

. . . ...
1 −αk−1

 .
This matrix has the property that P equals its minimal polynomial and its
characteristic polynomial.

Proposition. Let Ku be the matrix formed by the d first Krylov iterates of
a vector u. Then

AKu = KuCϕA,u .



172 CHAP. 8. LINEAR ALGEBRA

Hence, when d = n, the matrix Ku is square and invertible. Therefore, it
defines a similarity transformation K−1

u AKu = CϕA,u reducing A to a companion
matrix. Now this transformation preserves the determinant and thus also the
characteristic polynomial. The coefficients of the characteristic and minimal
polynomial (which are identical in this case) can therefore be read off directly
from the last column of the companion matrix.

sage: A = matrix(GF(97), 4, 4,\
....: [86,1,6,68,34,24,8,35,15,36,68,42,27,1,78,26])
sage: e1 = identity_matrix(GF(97),4)[0]
sage: U = matrix(A.transpose().maxspin(e1)).transpose()
sage: F = U^-1*A*U; F 0 0 0 83

1 0 0 77
0 1 0 20
0 0 1 10


sage: K.<x> = GF(97)[]
sage: P = x^4-sum(F[i,3]*x^i for i in range(4)); P
x4 + 87x3 + 77x2 + 20x+ 14

sage: P == A.charpoly()
True

In the general case (d ≤ n) the iterates u, . . . , Ad−1u form a basis of a linear
subspace I invariant under the action of the matrix A (i.e., such that AI ⊆ I).
This subspace is also called cyclic invariant subspace, as these vectors are obtained
cyclically by applying the matrix A to the preceding vector. The dimension of this
subspace is the degree of the minimal polynomial of u and is therefore bounded
by the degree of the minimal polynomial of the matrix A. When the dimension is
maximal, the space is generated by the Krylov iterates of the vector constructed
in Exercise 31, which we will denote by u∗1. It is called the first invariant subspace.
Let V be the complementary subspace of this first invariant subspace. Computing
modulo the first invariant subspace, i.e., by considering that two vectors are equal
whenever their difference belongs to the first invariant subspace, one can define a
second invariant subspace for vectors in this complementary subspace, as well as
a minimal polynomial which is called the second similarity invariant. In this case
we have a relation of the form:

A [Ku∗1
Ku∗2 ] = [Ku∗1

Ku∗2 ]
[
Cϕ1

Cϕ2

]
,

where ϕ1, ϕ2 are the first two similarity invariants and Ku∗1
,Ku∗2

are the Krylov
matrices corresponding to the two cyclic subspaces generated by the vectors u∗1
and u∗2.

Iteratively, one can build a matrix K = [Ku∗1
. . . Ku∗

k
] that is square and

invertible, and satisfies

K−1AK =

Cϕ1
. . .

Cϕk

 . (8.2)
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As each u∗i is annihilated by the ϕj for j ≤ i, we have that ϕi | ϕi−1 for any
2 ≤ i ≤ k. Equivalently, the sequence of the ϕi is totally ordered for division.
One shows that for every matrix there exists a unique sequence of similarity
invariants ϕ1, . . . , ϕk. Therefore, the block diagonal matrix Diag(Cϕ1 , . . . , Cϕk),
similar to the matrix A and revealing these polynomials, is a normal form, called
the rational canonical form or the Frobenius normal form.

Theorem (Frobenius normal form). For every matrix A over a field, there

is a unique matrix F =

Cϕ1
. . .

Cϕk

, with ϕi+1 | ϕi for all i < k, similar

to A.
Equation (8.2) shows that one can read off the bases of the invariant subspaces

from the transformation matrix K.
Remark.

χA(x) = det(xId−A) = det(K) det(xId− F ) det(K−1)

=
k∏
i=1

det(xId− Cϕi) =
k∏
i=1

ϕi(x).

Hence, the minimal polynomial ϕ1 is a divisor of the characteristic polynomial,
which therefore annihilates the matrix A.

In Sage, one can compute the Frobenius normal form over Q of matrices with
coefficients over Z with the method frobenius1:

sage: A = matrix(ZZ,8,[[6,0,-2,4,0,0,0,-2],[14,-1,0,6,0,-1,-1,1],\
....: [2,2,0,1,0,0,1,0],[-12,0,5,-8,0,0,0,4],\
....: [0,4,0,0,0,0,4,0],[0,0,0,0,1,0,0,0],\
....: [-14,2,0,-6,0,2,2,-1],[-4,0,2,-4,0,0,0,4]])
sage: A.frobenius()

0 0 0 4 0 0 0 0
1 0 0 4 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 4 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 2


One can also obtain the list of similarity invariants, by passing 1 as argument.

In order to obtain information on the associated invariant subspaces, one passes
2 as argument, which will produce the transformation matrix K. It is a basis of
the whole space, decomposed into the direct sum of the invariant subspaces.

sage: A.frobenius(1)[
x4 − x2 − 4x− 4, x3 − x2 − 4, x− 2

]
1It is a slight abuse in the interface of the software: although the Frobenius normal form

is defined for any matrix over a field, Sage only allows to compute it with integer matrices,
implicitly embedding them over Q.
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sage: F,K = A.frobenius(2)
sage: K

1 − 15
56

17
224

15
56 − 17

896 0 − 15
112

17
64

0 29
224 − 13

224 − 23
448 − 17

896 − 17
896

29
448

13
128

0 − 75
896

75
896 − 47

896 0 − 17
896 − 23

448
11
128

0 17
896 − 29

896
15
896 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 − 4

21 − 4
21 − 10

21 0 0 − 2
21 1


sage: K^-1*F*K == A
True

These results implicitly assume that the matrix A is embedded in the fraction
field Q. In order to study the action of the matrix A on the free module Zn,
and make explicit the corresponding decomposition of the module, the method
decomposition can be used. However, further explanations on this method would
go beyond the scope of this book.

Invariant Factors and Similarity Invariants. There is a fundamental prop-
erty relating the similarity invariants and the invariant factors, mentioned in
Section 8.2.1.

Theorem. The similarity invariants of a matrix A over a field F correspond
to the invariant factors of its characteristic matrix xId−A over the ring F [x].

The proof of this theorem goes well beyond the scope of this book and we will
only illustrate it on the previous example.

sage: S.<x> = QQ[]
sage: B = x*identity_matrix(8) - A
sage: B.elementary_divisors()[
1, 1, 1, 1, 1, x− 2, x3 − x2 − 4, x4 − x2 − 4x− 4

]
sage: A.frobenius(1)[
x4 − x2 − 4x− 4, x3 − x2 − 4, x− 2

]
Eigenvalues, Eigenvectors. Considering the factorisation of the minimal
polynomial into irreducible factors, ϕ1 = ψm1

1 . . . ψmss , then every invariant factor
can be written in the form ϕi = ψ

mi,1
1 . . . ψ

mi,s
s , with multiplicitiesmi,j ≤ mj . One

can show that there is a similarity transformation, replacing each companion block
Cϕi in the Frobenius normal form by a diagonal block Diag(C

ψ
mi,1
1

, . . . , C
ψ
mi,s
s

).
This variant of the Frobenius normal form, called intermediate form, is still
composed of companion blocks but each of which now corresponds to an irreducible
polynomial raised to some power.
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F =



C
ψ
m1,1
1

. . .
C
ψ
m1,s
s

C
ψ
m2,1
1

. . .
. . .
C
ψ
mk,1
1

. . .


(8.3)

When an irreducible factor ψi has degree 1 and multiplicity 1, its companion block
is a 1×1 matrix on the main diagonal and thus corresponds to an eigenvalue. When
the minimal polynomial splits and is square-free, the matrix is diagonalisable.

The eigenvalues are obtained with the method eigenvalues. The methods
eigenvectors_right and eigenvectors_left list for each eigenvalue, the right
(respectively left) eigenvectors associated together with the multiplicity of the
eigenvalue. Lastly, the eigenspaces together with a basis of eigenvectors are
returned by the methods eigenspaces_right and eigenspaces_left.

sage: A = matrix(GF(7),4,[5,5,4,3,0,3,3,4,0,1,5,4,6,0,6,3])
sage: A.eigenvalues()
[4, 1, 2, 2]
sage: A.eigenvectors_right()
[(4, [
(1, 5, 5, 1)
], 1), (1, [
(0, 1, 1, 4)
], 1), (2, [
(1, 3, 0, 1),
(0, 0, 1, 1)
], 2)]
sage: A.eigenspaces_right()
[
(4, Vector space of degree 4 and dimension 1 over Finite Field
of size 7
User basis matrix:
[1 5 5 1]),
(1, Vector space of degree 4 and dimension 1 over Finite Field
of size 7
User basis matrix:
[0 1 1 4]),
(2, Vector space of degree 4 and dimension 2 over Finite Field
of size 7
User basis matrix:
[1 3 0 1]
[0 0 1 1])
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]

More concisely, the method eigenmatrix_right returns the tuple of the
diagonalised matrix and the matrix of the corresponding right eigenvectors. The
eigenmatrix_left does similarly with the left eigenvectors.

sage: A.eigenmatrix_right()

 4 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 ,

 1 0 1 0
5 1 3 0
5 1 0 1
1 4 1 1



Jordan Normal Form. When the minimal polynomial splits over the base
field, but has factors with multiplicity greater than 1, the intermediate form (8.3)
is not diagonal. One can show that there is no similarity transformation making
it diagonal, hence the matrix is not diagonalisable. However it can be trigonalised,
which means upper triangular, with eigenvalues on the main diagonal. Among
all possible such upper triangular matrices, the most reduced one is the Jordan
normal form. A Jordan block Jλ,k, associated with an eigenvalue λ and of order
k, is the k × k matrix Jλ,k given by

Jλ,k =


λ 1

. . . . . .
λ 1

λ

 .
This matrix plays a similar role as the companion blocks, revealing more precisely
the multiplicity of an eigenvalue. Indeed, its characteristic polynomial is χJλ,k =
(X − λ)k. Moreover, its minimal polynomial also equals ϕJλ,k = (X − λ)k: it is
necessarily a multiple of P = X − λ, now the matrix

P (Jλ,k) =


0 1

. . . . . .
0 1

0


is nilpotent of order k, hence ϕJλ,k = χJλ,k = (X − λ)k. The Jordan normal
form corresponds to the intermediate form (8.3), where the companion blocks of
the ψmi,jj have been replaced by the Jordan blocks Jλj ,mi,j (recall that since the
minimal polynomial splits, the ψj are of the form X − λj). As a consequence,
every matrix whose minimal polynomial splits is similar to a Jordan matrix of
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the form

J =



Jλ1,m1,1

. . .
Jλs,m1,s

Jλ1,m2,1

. . .
. . .

Jλ1,mk,1

. . .


. (8.4)

In particular, over any algebraically closed field, such as C, the Jordan normal
form always exists. In Sage, the constructor jordan_block(a,k) produces
the Jordan block Ja,k. The Jordan normal form is obtained by the method
jordan_form. The option transformation=True makes the method also return
the transformation matrix U such that U−1AU is in Jordan normal form.

sage: A = matrix(ZZ,4,[3,-1,0,-1,0,2,0,-1,1,-1,2,0,1,-1,-1,3])
sage: A.jordan_form() 3 0 0 0

0 3 0 0
0 0 2 1
0 0 0 2


sage: J,U = A.jordan_form(transformation=True)
sage: U^-1*A*U == J
True

The Jordan normal form is unique up to a permutation of the Jordan blocks.
Depending on the bibliographic references, one sometimes imposes that their
order respects the order of the similarity invariants, as in equation (8.4). Remark,
from the above example, that Sage does not respect this order, since the first
similarity invariant (the minimal polynomial) is the polynomial (X− 3)(X− 2)2.

Primary Normal Form. For the sake of completeness, we should mention a
last normal form, generalising the Jordan form in the case where the minimal
polynomial does not split. For an irreducible polynomial P of degree k, one
defines the Jordan block of multiplicity m as the km× km matrix

JP,m =


CP B

. . . . . .
CP B

CP


where B is the k × k matrix whose coefficients are all zero except Bk,1 = 1, and
where CP is the companion matrix associated to the polynomial P (§8.2.3). Note
that when P = X − λ, this definition coincides with the notion of Jordan block
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associated with the eigenvalue λ. One shows similarly that the minimal and
characteristic polynomials of this matrix are

χJP,m = ϕJP,m = Pm.

As a consequence, there exists a similarity transformation replacing each compan-
ion block C

ψ
mi,j
j

in the intermediate form (8.3) with a Jordan block Jψj ,mi,j . The
resulting matrix is called the primary form or also the second Frobenius form. It
is again a normal form, unique up to a permutation of the diagonal blocks.

The uniqueness of these normal forms is used for instance to test whether two
matrices are similar, and in such a case, to produce a similarity transformation
from one to the other.

Exercise 32. Write a program testing whether two input matrices A and B are
similar and returning the transformation matrix U such that A = U−1BU (one can
return None instead in the case where the two matrices are not similar).



9
Polynomial Systems

This chapter completes the two preceding ones. The objects we consider are
systems of equations in several variables, as in Chapter 8. These equations, as
in Chapter 7, are polynomial. Compared to univariate polynomials, those with
several variables yield nice mathematical properties, but also new difficulties,
related in particular to the fact that the ring K[x1, . . . , xn] is not principal. The
theory of Gröbner bases provides tools to overcome this limitation. In the end,
we have at our disposal powerful methods to study polynomial systems, with
uncountable applications in various domains.

A large part of the chapter only requires basic knowledge on multivariate
polynomials. Some parts are however at the level of a commutative algebra course
of third or fourth year at university. For more details, a very good and complete
reference is the book of Cox, Little and O’Shea [CLO07].

9.1 Polynomials in Several Variables

9.1.1 The Rings A[x1, . . . , xn]
We consider here polynomials in several indeterminates or variables, also called
multivariate polynomials.

Similarly to other algebraic structures available in Sage, before being able to
construct polynomials, we have to define a family of indeterminates living all in
the same ring. The syntax is almost the same as with a single variable (cf. §7.1.1):

sage: R = PolynomialRing(QQ, 'x,y,z')
sage: x,y,z = R.gens() # gives the tuples of indeterminates
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or in short:
sage: R.<x,y,z> = QQ[]

(or even R = QQ[’x,y,z’]). The PolynomialRing constructor also allows to
create a family of indeterminates with the same name, and integer indices:

sage: R = PolynomialRing(QQ, 'x', 10)

Assigning the n-tuple returned by gens to the variable x then allows to easily
access the indeterminate xi via x[i]:

sage: x = R.gens()
sage: sum(x[i] for i in xrange(5))
x0 + x1 + x2 + x3 + x4

The order of the variables matters. The comparison with == between QQ[’x,y’]
and QQ[’y,x’] returns false, and a given polynomial prints differently if seen as
element of the former or of the latter:

sage: def test_poly(ring, deg=3):
....: monomials = Subsets(
....: flatten([(x,)*deg for x in (1,) + ring.gens()]),
....: deg, submultiset=True)
....: return add(mul(m) for m in monomials)

sage: test_poly(QQ['x,y'])
x^3 + x^2*y + x*y^2 + y^3 + x^2 + x*y + y^2 + x + y + 1
sage: test_poly(QQ['y,x'])
y^3 + y^2*x + y*x^2 + x^3 + y^2 + y*x + x^2 + y + x + 1
sage: test_poly(QQ['x,y']) == test_poly(QQ['y,x'])
True

Exercise 33. Explain the behaviour of the test_poly function defined above.
More generally, writing polynomials in canonical form requires choosing a way

to order their monomials. Ordering them by degree is natural for univariate poly-
nomials, however for multivariate polynomials, no monomial order is satisfactory
in all cases. Therefore, Sage allows us to choose between several orders, thanks
to the order option of PolynomialRing. For example, the deglex order first
ranks monomials according to their total degree, then by lexicographic order of
the degrees of indeterminates in case of same total degree:

sage: test_poly(PolynomialRing(QQ, 'x,y', order='deglex'))
x^3 + x^2*y + x*y^2 + y^3 + x^2 + x*y + y^2 + x + y + 1

The main available orders are described in more detail in §9.3.1. We will see that
the choice of the monomial order does not only determine the output, but also
matters for some computations.

Exercise 34. Define the ring Q[x2, x3, . . . , x37] whose indeterminates are indexed
by prime numbers less than 40, and the variables x2, x3, . . . , x37 to access the indeter-
minates.

Finally, it can be useful, in some cases, to play with multivariate polynomials in
recursive representation, i.e., seen as elements of a polynomial ring with coefficients
that are themselves polynomials (see the sidebar on page 130).
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Construction of polynomial rings

ring A[x, y] PolynomialRing(A, 'x,y') or A['x,y']
ring A[x0, . . . , xn−1] PolynomialRing(A, 'x', n)

ring A[x0, x1, . . . , y0, y1, . . . ] InfinitePolynomialRing(A, ['x','y'])
n-tuple of generators R.gens()
1st, 2nd... generator R.0, R.1, ...

indeterminates of R = A[x, y][z][. . . ] R.variable_names_recursive()
conversion A[x1, x2, y]→ A[x1, x2][y] p.polynomial(y)

Access to coefficients

support, non-zero coefficients p.exponents(), p.coefficients()
coefficient of a monomial p[x^2*y] or p[2,1]

degree (total, in x, partial) p.degree(), p.degree(x), p.degrees()
leading monomial/coefficient/term p.lm(), p.lc(), p.lt()

Basic operations

transformation of coefficients p.map_coefficients(f)
partial derivative d/dx p.derivative(x)

evaluation p(x, y)|x=a,y=b p.subs(x=a, y=b) or p(x=a, y=b)
homogenisation p.homogenize()

common denominator (p ∈ Q[x, y, . . . ]) p.denominator()

Table 9.1 – Multivariate polynomials.

9.1.2 Polynomials
Just as univariate polynomials are in the class Polynomial, multivariate polyno-
mials (in rings with a finite number of variables) are in the class MPolynomial1.
For the usual base rings (like Z, Q or Fq), Sage calls the Singular computer
algebra system, which is specialised in fast polynomial computations. In the other
cases, a generic and much slower implementation is used.

Multivariate polynomials are always encoded in sparse representation2. Why
this choice? A dense polynomial with n variables of total degree d contains

(
n+d
d

)
monomials: for n = d = 10, it amounts to 184 756 coefficients to store! It is thus
very difficult to manipulate large dense polynomials like we do with univariate
ones. Besides, even when the polynomials are dense, the supports (the exponents
of non-zero monomials) encountered in practice have various forms. If for example
a polynomial with n variables, dense up to the total degree d− 1, is represented
by a rectangular array d × · · · × d, for large d, only about one coefficient over
n! is non-zero. On the contrary, the sparse representation by dictionary is well
adapted to the shape of the support, and also to the monomial order.

1Contrary to Polynomial, this class is not directly available from the command line: we
have to use its full name. For example, we can check whether an object is of type “multivariate
polynomial” by isinstance(p, sage.rings.polynomial.multi_polynomial.MPolynomial).

2The recursive representation (see sidebar page 130) yields nevertheless partially dense
polynomials. In the memory representation of a polynomial from A[x][y], each coefficient of yk
occupies (in general) a space proportional to its degree in x, to which we should add a space
proportional to the degree in y for the polynomial itself.
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The rings A[(xn, yn, . . . )n∈N]

It happens that we do not know, at the beginning of a computation, how
many variables will be necessary. This makes the use of PolynomialRing
rather painful: we first have to compute in a first domain, then extend it
and convert all elements each time we want to introduce a new variable.

Polynomial rings with an infinite number of variables provide a more
flexible data structure. Their elements can contain variables in one or several
infinite families of indeterminates. Each generator of the ring corresponds
not only to a single variable, but to a family of variables indexed by integers:

sage: R.<x,y> = InfinitePolynomialRing(ZZ, order='lex')
sage: p = mul(x[k] - y[k] for k in range(2)); p
x_1*x_0 - x_1*y_0 - x_0*y_1 + y_1*y_0
sage: p + x[100]
x_100 + x_1*x_0 - x_1*y_0 - x_0*y_1 + y_1*y_0

We get back to some usual polynomial ring PolynomialRing thanks to
the polynomial method, which returns the image of an element from
InfinitePolynomialRing in a sufficiently large ring to contain all elements
of the ring with an infinite number of variables which have been produced so
far. The obtained ring is generally not the smallest one with this property.

As a counterpart of this facility, these rings are less efficient than the rings
PolynomialRing. Also, their ideals cannot replace those of usual polynomial
rings for computations on polynomial systems, which is the main topic of
this chapter.

9.1.3 Basic Operations
Let us fix the terminology. Let R = A[x1, . . . , xn] be a polynomial ring. We call
monomial an expression of the form xα1

1 xα2
2 · · ·xαnn , i.e., a product of indetermi-

nates, and we note it xα in short. The integer n-tuple α = (α1, α2, . . . , αn) is the
exponent of the monomial xα. A term is a monomial multiplied by an element of
A, its coefficient.

Since there is no unique way to order the terms, the elements of R do not
have, as mathematical objects, a dominant coefficient. However, once an order
has been chosen at the ring construction, it is possible and useful to define a
leading monomial, the leftmost one in the writing order. The methods lm, lc
and lt of a multivariate polynomial return respectively its leading monomial, its
leading coefficient, and the term they form together:

sage: R.<x,y,z> = QQ[]
sage: p = 7*y^2*x^2 + 3*y*x^2 + 2*y*z + x^3 + 6
sage: p.lt()
7*x^2*y^2

The arithmetic operations +, - and *, as well as the methods coefficients,
dict, and several others, work like their univariate variants. Among the small
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differences, the square-bracket operator [] to extract a coefficient accepts as
parameter either a monomial, or its exponent:

sage: p[x^2*y] == p[(2,1,0)] == p[2,1,0] == 3
True

Likewise, the evaluation of a polynomial requires giving values to all variables, or
to make explicit those to substitute:

sage: p(0, 3, -1)
0
sage: p.subs(x = 1, z = x^2+1)
2*x^2*y + 7*y^2 + 5*y + 7

The subs method might also substitute any number of variables at once, see
its documentation for advanced examples. The degree might be either total or
partial:

sage: print("total={d} (in x)={dx} partial={ds}"\
....: .format(d=p.degree(), dx=p.degree(x), ds=p.degrees()))
total=4 (in x)=3 partial=(3, 2, 1)

Other constructions get trivial adaptations, for example, the derivative method
takes as parameter the variable with respect to which we want to differentiate.

9.1.4 Arithmetic
Beyond syntactic and elementary arithmetic operations, available functions in
Sage are in general limited to polynomials over a field, and sometimes over Z
or Z/nZ. For the rest of this chapter, unless otherwise noted, we will consider
polynomials over a field.

The Euclidean division of polynomials makes sense only in one variable.
In Sage, the quo_rem method and the associated operators // and % remain
nonetheless defined for multivariate polynomials. The “division with remainder”
they compute satisfies

(p//q)*q + (p%q) == p

and matches the Euclidean division when p and q depend on one variable only,
but it is not a Euclidean division and it is not canonical. It is however useful when
the division is exact, or when the divisor is a monomial. In the other cases, we
will prefer to quo_rem and its variants the mod method, described in §9.2.3, which
reduces a polynomial modulo an ideal while taking into account the monomial
order of the ring:

sage: R.<x,y> = QQ[]; p = x^2 + y^2; q = x + y
sage: print("({quo})*({q}) + ({rem}) == {p}".format( \
....: quo=p//q, q=q, rem=p%q, p=p//q*q+p%q))
(-x + y)*(x + y) + (2*x^2) == x^2 + y^2
sage: p.mod(q) # is NOT equivalent to p%q
2*y^2
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Operations on multivariate polynomials

divisibility p | q p.divides(q)
factorisation p.factor()

gcd, lcm p.gcd(q), p.lcm(q)
square-free test p.is_squarefree()

resultant Resx(p, q) p.resultant(q, x)

Table 9.2 – Arithmetic.

The methods divides, gcd, lcm or factor have the same meaning as in one
variable. Since multivariate polynomial rings are not Euclidean in general, the
first ones are not available for arbitrary coefficient rings, but work on usual fields,
for example on number fields:

sage: R.<x,y> = QQ[exp(2*I*pi/5)][]
sage: (x^10 + y^5).gcd(x^4 - y^2)
x^2 + y
sage: (x^10 + y^5).factor()
(x^2 + y) * (x^2 + (a^3)*y) * (x^2 + (a^2)*y) * (x^2 + (a)*y) * (x^2 +

(-a^3 - a^2 - a - 1)*y)

9.2 Polynomial Systems and Ideals
We now consider the central topic of this chapter. Sections 9.2.1 and 9.2.2 give an
overview of the different ways to find and understand the solutions of a system of
polynomial equations with the help of Sage. Section 9.2.3 is devoted to ideals
associated to these systems. The last sections come back in a more detailed
manner on algebraic elimination and system solving tools.

9.2.1 A First Example
Let us revisit the polynomial system from Section 2.2, x2yz = 18

xy3z = 24
xyz4 = 6.

(9.1)

The solve() function from Sage was only able to find numerical solutions. Let
us now see how Sage is able to solve the system exactly, and, with a little help
from the user, to find simple closed forms for all solutions3.

Enumerating Solutions. Let us first translate the problem in more algebraic
terms, by constructing the ideal of Q[x, y, z] generated by the equations:

3Our purpose being here to illustrate the tools to solve polynomial systems, we neglect the
possibility of reducing (9.1) to linear equations by taking the logarithm!
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sage: R.<x,y,z> = QQ[]
sage: J = R.ideal(x^2 * y * z - 18,
....: x * y^3 * z - 24,
....: x * y * z^4 - 6)

As we will see in Section 9.2.3, the following command enables us to check the
ideal J is of dimension zero, i.e., the system (9.1) has a finite number of solutions
in C3:

sage: J.dimension()
0

Once this is established, the first reflex should be to call the method variety,
which computes all solutions of the system. Without any parameter, it gives the
solutions in the base field of the polynomial ring:

sage: J.variety()
[{y: 2, z: 1, x: 3}]

The solution (3, 2, 1) already found is thus the unique rational solution.
The next step is to enumerate the complex solutions. To perform this exactly,

we work in the field of algebraic numbers. We find again the 17 solutions:
sage: V = J.variety(QQbar)
sage: len(V)
17

Explicitly, the last three have the following form:
sage: V[-3:]
[{z: 0.9324722294043558? - 0.3612416661871530?*I,
y: -1.700434271459229? + 1.052864325754712?*I,
x: 1.337215067329615? - 2.685489874065187?*I},
{z: 0.9324722294043558? + 0.3612416661871530?*I,
y: -1.700434271459229? - 1.052864325754712?*I,
x: 1.337215067329615? + 2.685489874065187?*I},
{z: 1, y: 2, x: 3}]

Each solution point is given by a dictionary whose keys are the generators of
QQbar[’x,y,z’] (and not of QQ[’x,y,z’], which explains the short detour below),
and the associated coordinates of the point. Except for the rational solution
already identified, the first coordinates are all algebraic numbers of degree 16:

sage: (xx, yy, zz) = QQbar['x,y,z'].gens()
sage: [ pt[xx].degree() for pt in V ]
[16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 1]

Computing with the Solutions and Identifying Their Structure. We
have obtained an exact representation of the complex solutions from the sys-
tem (9.1), however this representation is not really explicit. This is not a problem:
having the coordinates as elements of QQbar is enough to pursue exact computa-
tions on these solutions.



186 CHAP. 9. POLYNOMIAL SYSTEMS

For example, it is not difficult to see that if (x, y, z) is solution of the sys-
tem (9.1), then so is (|x|, |y|, |z|). Let us build the set of (|x|, |y|, |z|) for (x, y, z)
solution:

sage: Set(tuple(abs(pt[i]) for i in (xx,yy,zz)) for pt in V)
{(3, 2, 1)}

All the values of x (resp. y, z) have thus the same modulus. Even more, we can
check that the substitution

(x, y, z) 7→ (ωx, ω9y, ω6z) where ω = e2πi/17 (9.2)

leaves the system invariant. In particular, the last coordinates of the solutions
are exactly the seventeenth roots of unity, which we check again thanks to the
possibility to compute exactly with algebraic numbers:

sage: w = QQbar.zeta(17); w # primitive root of 1
0.9324722294043558? + 0.3612416661871530?*I
sage: Set(pt[zz] for pt in V) == Set(w^i for i in range(17))
True

The solutions of the system are therefore the triples (3ω, 2ω9, ω6) for ω17 = 1.
This is much more explicit!

Exercise 35. Look for real solutions (and not only rational ones) of (9.1), to check
directly there is only (x = 3, y = 2, z = 1). Find again the substitution (9.2), including
the value 17 for the order of ω as root of unity, by a computation with Sage.

We could have reached the same result by examining the minimal polynomials
of the coordinates of points of V . We see indeed that a given coordinate has
the same minimal polynomial for all solution points, apart from (3, 2, 1). The
common minimal polynomial of the third coordinates is nothing else than the
cyclotomic polynomial Φ17:

sage: set(pt[zz].minpoly() for pt in V[:-1])
{x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6

+ x^5 + x^4 + x^3 + x^2 + x + 1}

Those of the first and second coordinate are respectively 316 · Φ17(x/3) and
216 · Φ17(x/2).

Closed-Form Expressions. Getting an explicit form of the solutions is thus
possible using the exponential notation of complex numbers:

sage: def polar_form(z):
....: rho = z.abs(); rho.simplify()
....: theta = 2 * pi * z.rational_argument()
....: return (SR(rho) * exp(I*theta))
sage: [tuple(polar_form(pt[i]) for i in [xx,yy,zz]) for pt in V[-3:]]
[(3*e^(-6/17*I*pi), 2*e^(14/17*I*pi), e^(-2/17*I*pi)),
(3*e^(6/17*I*pi), 2*e^(-14/17*I*pi), e^(2/17*I*pi)), (3, 2, 1)]

Naturally, if we had had the idea of writing the elements of V in exponential
notation, this would have been enough to conclude.
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Simplifying the System. A different approach is possible. Instead of looking
for solutions, let us try to compute a simpler form of the system itself. The
fundamental tools offered by Sage for this purpose are the triangular decomposition
and Gröbner bases. We will see later exactly what they compute; let us first use
them on this example:

sage: J.triangular_decomposition()
[Ideal (z^17 - 1, y - 2*z^10, x - 3*z^3) of Multivariate
Polynomial Ring in x, y, z over Rational Field]
sage: J.transformed_basis()
[z^17 - 1, -2*z^10 + y, -3/4*y^2 + x]

We obtain in both cases the equivalent system

z17 = 1 y = 2z10 x = 3z3,

or x = 3y2/4 for the last equation with transformed_basis, i.e., V = {(3ω3, 2ω10, ω) |
ω17 = 1}. This is an immediate parametrisation of the compact form of solutions
found manually above.

9.2.2 What Does Solving Mean?
A polynomial system that has solutions often has an infinite number of solutions.
The simple equation x2−y = 0 has an infinite number of solutions in Q2, not even
considering R2 or C2. It is therefore not possible to enumerate them. The best we
can do is to describe the set of solutions “as explicitly as possible”, i.e., compute
a representation of it from which we can easily extract useful information. The
situation is analogous to linear systems, for which (in the homogeneous case) a
basis of the system kernel is a good description of the set of solutions.

In the particular case where the number of solutions is finite, it becomes
possible to “compute them”. However, even in that case, do we want to enumerate
the solutions in Q, or in a finite field Fq? To find real or complex numerical
approximations? Or even, as in the example of last section, to represent them
using algebraic numbers, i.e., to compute for example minimal polynomials of
their coordinates?

This very example illustrates the fact that other representations of the set
of solutions might be much more useful than a list of points, more so when the
solutions are numerous. Therefore, enumerating the solutions is not always the
best thing to do, even when possible. In the end, we do not really want to
compute the solutions, but we want to compute with them, to deduce afterwards,
according to the given problem, the information we are really interested in. The
rest of this chapter investigates several useful tools for this purpose.

9.2.3 Ideals and Systems
If s polynomials p1, . . . , ps ∈ K[x] vanish at a point x with coordinates in K or
an extension of K, any element of the ideal they generate also vanishes at x. It
is thus natural to associate to the polynomial system

p1(x) = p2(x) = · · · = ps(x) = 0
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sage: opts = {'axes':True, 'gridlines':True, 'frame':False,
....: 'aspect_ratio':1, 'axes_pad':0, 'fontsize':8,
....: 'xmin':-1.3, 'xmax':1.3, 'ymin':-1.3, 'ymax':1.3}
sage: (ideal(J.0).plot() + ideal(J.1).plot()).show(**opts)

Figure 9.1 – Intersection of two plane curves, see systems (9.3).

the ideal J = 〈p1, . . . , ps〉 ⊂ K[x]. Two polynomial systems generating the same
ideal are equivalent in the sense that they share the same solutions. If L is a field
containing K, we call algebraic subvariety of Ln associated to J the set

VL(J) = {x ∈ Ln | ∀p ∈ J, p(x) = 0} = {x ∈ Ln | p1(x) = · · · = ps(x) = 0}

of solutions of the system with coordinates in L. Different ideals may have the
same associated variety. For example, the equations x = 0 and x2 = 0 have the
same unique solution in C, although we have 〈x2〉 ( 〈x〉. The ideal generated by
a polynomial system captures rather the notion of “solutions with multiplicities”
(in the algebraic closure of K).

For instance, the following two systems both express the intersection of the
unit circle and a curve of equation αx2y2 = 1, union of two equilateral hyperbolas
(see Figure 9.1):

(S1)
{
x2 + y2 = 1
16x2y2 = 1

(S2)
{
x2 + y2 = 1
4x2y2 = 1.

(9.3)

The system (S1) has eight solutions in C, all with real coordinates. When we
deform it into (S2) by varying the parameter α, the two solutions on each branch
of the hyperbola move closer until they match. The system (S2) has then only
four solutions, each one in some sense of “multiplicity two”. By decreasing α
further, we would have no more real solution, but eight complex solutions.

Computing Modulo an Ideal. Just as for univariate polynomials, Sage allows
us to define ideals4 J ⊂ K[x], quotient rings K[x]/J , and to compute naturally

4Warning: the objects InfinitePolynomialRing also have an ideal method, however it does
not have the same meaning as for usual polynomial ring. (An ideal of K[(xn)n∈N] has no reason
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with elements of these quotient rings. The ideal J1 associated to (S1) is built
with:

sage: R.<x,y> = QQ[]
sage: J = R.ideal(x^2 + y^2 - 1, 16*x^2*y^2 - 1)

We can then form the quotient of K[x] by J1, and project polynomials on it,
compute with equivalence classes modulo J1, and “lift” them into representatives:

sage: ybar2 = R.quo(J)(y^2)
sage: [ybar2^i for i in range(3)]
[1, ybar^2, ybar̂ 2 - 1/16]
sage: ((ybar2 + 1)^2).lift()
3*y^2 + 15/16

There is a theoretical issue here. The elements of K[x]/J are represented in
normal form, which is necessary to be able to check the equality between two
elements. However, this normal form is not easy to define, for the reason already
mentioned in §9.1.4: the division of a representative of an equivalence class p+ J
by a principal generator of J , used to compute in K[x]/J , has no direct analogue
in several variables. Let us admit for now that a normal form nevertheless exists,
which depends on the order on the elements chosen at the ring construction, and
builds on a particular system of generators of J called Gröbner basis. Section 9.3
at the end of this chapter defines Gröbner bases and shows how to use them
in computations. Sage automatically computes Gröbner bases when required;
however, these computations are sometimes very expensive, in particular when
the number of variables is large, which might make computations in a quotient
ring somewhat difficult.

Let us go back to playing with Sage. When p ∈ J , the command p.lift(J)
rewrites p as a linear combination of generators of J with polynomial coefficients:

sage: u = (16*y^4 - 16*y^2 + 1).lift(J); u
[16*y^2, -1]
sage: u[0]*J.0 + u[1]*J.1
16*y^4 - 16*y^2 + 1

For any polynomial p, the expression p.mod(J) gives the normal form of p
modulo J , seen as element of K[x]:

sage: (y^4).mod(J)
y^2 - 1/16

Beware: while J.reduce(p) is equivalent to p.mod(J), the variant p.reduce
([p1, p2, ...]) returns a representative of p+ J which is not necessarily the
normal form (see §9.3.2):

sage: (y^4).reduce([x^2 + y^2 - 1, 16*x^2*y^2 - 1])
y^4

By combining p.mod(J) and p.lift(J), we can decompose a polynomial p
into a linear combination of generators of J with polynomial coefficients, plus a
remainder which is zero if and only if p ∈ J .
to be finitely generated!) The rest of the chapter does not apply to these objects.
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Ideals

ideal 〈p1, p2〉 ⊂ R R.ideal(p1, p2) or (p1, p2)*R
sum, product, power I + J, I * J, I^k

intersection I ∩ J I.intersection(J)
quotient I : J = {p | pJ ⊂ I} I.quotient(J)

radical
√
J J.radical()

reduction modulo J J.reduce(p) or p.mod(J)
section of R � R/J p.lift(J)
quotient ring R/J R.quo(J) or R.quotient(J)
homogenised ideal J.homogenize()

Some predefined ideals

irrelevant ideal 〈x1, . . . , xn〉 R.irrelevant_ideal()
Jacobian ideal 〈∂p/∂xi〉i p.jacobian_ideal()

cyclic roots (9.11) sage.rings.ideal.Cyclic(R)
field equations xqi = xi sage.rings.ideal.FieldIdeal(GF(q)['x1,x2'])

Table 9.3 – Ideals.

Radical of an Ideal and Solutions. The main correspondence between ideals
and varieties lies in Hilbert’s theorem of zeros, also known as Nullstellensatz . Let
K̄ be an algebraic closure of K.

Theorem (Nullstellensatz). Let p1, . . . , ps ∈ K[x], and let Z ⊂ K̄n be the
set of common zeros to the pi. A polynomial p ∈ K[x] vanishes identically on Z
if and only if there exists an integer k such that pk ∈ 〈p1, . . . , ps〉.

This result provides an algebraic criterion to check whether a polynomial
system has some solutions. The constant polynomial 1 vanishes identically on Z
if and only if Z is empty, thus the system p1(x) = · · · = ps(x) = 0 has solutions
in K̄ if and only if the ideal 〈p1, . . . , ps〉 does not contain 1. For example, the
circles of radius 1 centered at (0, 0) and (4, 0) have a complex intersection:

sage: 1 in ideal(x^2+y^2-1, (x-4)^2+y^2-1)
False

However, after adding the condition x = y, the system does not have any solutions.
We can give a trivial proof that it is inconsistent by exhibiting as certificate a
combination of the equations that reduces to 1 = 0 if they are satisfied. The
computation

sage: R(1).lift(ideal(x^2+y^2-1, (x-4)^2+y^2-1, x-y))
[-1/28*y + 1/14, 1/28*y + 1/14, -1/7*x + 1/7*y + 4/7]

yields in our case the relation

1
28

(
(−y + 2)(x2 + y2 − 1) + (y + 2)

(
(x− 4)2 + y2 − 1

)
+ (−4x+ 4y + 16)(x− y)

)
= 1.
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In terms of ideals, the Nullstellensatz says that the set of polynomials vanishing
identically on the variety VK̄(J) associated to the ideal J is the radical of that
ideal, defined by √

J = {p ∈ K[x] | ∃k ∈ N, pk ∈ J}.

We have
VK̄(
√
J) = VK̄(J)

but intuitively, switching to the radical “forgets the multiplicities”. Therefore, the
ideal J1 is its own radical (we say it is radical), whereas the ideal J2 associated
to (S2) satisfies J2 (

√
J2:

sage: J1 = (x^2 + y^2 - 1, 16*x^2*y^2 - 1)*R
sage: J2 = (x^2 + y^2 - 1, 4*x^2*y^2 - 1)*R
sage: J1.radical() == J1
True
sage: J2.radical()
Ideal (2*y^2 - 1, 2*x^2 - 1) of Multivariate Polynomial
Ring in x, y over Rational Field
sage: 2*y^2 - 1 in J2
False

Systems, ideals and cryptography

Some specific modules, sage.rings.polynomial.multi_polynomial_
sequence and sage.crypto.mq, provide tools to manipulate polynomial
systems by taking into account the particular form of equations, and not
only the ideal they generate. This is useful to play with large structured
systems, like those found in cryptography. The module sage.crypto also
defines several polynomial systems associated to classical cryptographic
constructions.

Operations on Ideals. It is also possible to compute with ideals themselves.
Let us recall the definition of the sum of two ideals:

I + J = {p+ q | p ∈ I and q ∈ J} = 〈I ∪ J〉.

It corresponds geometrically to the intersection of varieties:

V (I + J) = V (I) ∩ V (J).

Hence, the ideal J1 associated to (S1) is the sum of C = 〈x2 + y2 − 1〉 and
H = 〈16x2y2 − 1〉, which define respectively the circle and the double hyperbola.
In Sage:

sage: C = ideal(x^2 + y^2 - 1); H = ideal(16*x^2*y^2 - 1)
sage: C + H == J1
True
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This equality test is also based on computing a Gröbner basis.
Similarly, the intersection, the product and the quotient of ideals satisfy

I ∩ J = {p | p ∈ I and p ∈ J} V (I ∩ J) = V (I) ∪ V (J)
I · J = 〈pq | p ∈ I, q ∈ J〉 V (I · J) = V (I) ∪ V (J)
I : J = {p | pJ ⊂ I} V (I : J) = V (I) \ V (J)

and are computed as indicated in Table 9.3. The notation X̄ designs here the
Zariski closure of X, i.e., the smallest algebraic variety containing X. For example,
the curve of Figure 9.1a is the set of zeros of polynomials from C ∩H, and the
quotient (C ∩H) : 〈4xy − 1〉 corresponds to the union of the circle with one of
the two hyperbolas:

sage: CH = C.intersection(H).quotient(ideal(4*x*y-1)); CH
Ideal (4*x^3*y + 4*x*y^3 + x^2 - 4*x*y + y^2 - 1) of
Multivariate Polynomial Ring in x, y over Rational Field
sage: CH.gen(0).factor()
(4*x*y + 1) * (x^2 + y^2 - 1)

However, the curve obtained by removing from V (H) a finite number of points is
not an algebraic subvariety, so that:

sage: H.quotient(C) == H
True

Dimension. To each ideal of J ⊂ K[x] is also associated a dimension, which
intuitively corresponds to the maximal “dimension” of the “components” of the
variety V (J) over an algebraically closed field5. We have for example:

sage: [J.dimension() for J in [J1, J2, C, H, H*J2, J1+J2]]
[0, 0, 1, 1, 1, -1]

Indeed, V (J1) and V (J2) have a finite number of points, V (C) and V (H) are
curves, V (H · J2) is the union of curves and isolated points, and V (J1 + J2)
is empty. The zero-dimensional systems, i.e., those that generate an ideal of
dimension zero, or equivalently that have a finite number of solutions (over the
algebraic closure of K), will be particularly studied in the rest of the chapter,
since they are the systems we can “solve” the most explicitly.

9.2.4 Elimination
In a system of equations, eliminating a variable means finding “consequences”, or
better “all consequences”, of the system which are independent of this variable.
Said otherwise, we want to find equations satisfied by any solution, but which do
not contain the eliminated variable, which makes them often easier to analyse.

5We give in §9.3.3 a more rigorous (but not necessarily clearer) definition. We refer the
reader to the reference given at the beginning of the chapter for better explanations.
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General polynomial systems: elimination, geometry

elimination ideal J ∩A[z, t] ⊂ K[x, y, z, t] J.elimination_ideal(x, y)
resultant Resx(p, q) p.resultant(q, x)

dimension J.dimension()
genus J.genus()

Zero-dimensional systems

solutions in L ⊇ K J.variety(L)
dimension over K of the quotient J.vector_space_dimension()

quotient basis J.normal_basis()
triangular decomposition J.triangular_decomposition()

Table 9.4 – Solving polynomial systems.

For example, we can eliminate x from the linear system{
2x+ y − 2z = 0
2x+ 2y + z = 1

(9.4)

by subtracting the first equation from the second one. It yields y + 3z = 1, which
shows that any solution triple (x, y, z) of (9.4) is of the form (x, 1− 3z, z). We
can then check that every “partial solution” (1− 3z, z) lifts to a (unique) solution
( 5z−1

2 , 1− 3z, z) of (9.4). This illustrates that Gauss’ pivoting algorithm solves
linear systems by elimination, as opposed to, for example, Cramer’s formulas.

Elimination Ideals. In the context of polynomial systems, the “consequences”
of equations p1(x) = · · · = ps(x) = 0 are elements of the ideal 〈p1, . . . , ps〉. If J
is an ideal of K[x1, . . . , xn], we call k-th elimination ideal of J the set

Jk = J ∩K[xk+1, . . . , xn] (9.5)

of elements of J which only contain the n− k last variables. This is an ideal of
K[xk+1, . . . , xn].

In Sage, the method elimination_ideal takes as input the list of variables
to eliminate. Beware: it does not return Jk ⊂ K[xk+1, . . . , xn], but the ideal 〈Jk〉
of K[x1, . . . , xn] it generates. In the case of the linear system (9.4), we find

sage: R.<x,y,z> = QQ[]
sage: J = ideal(2*x+y-2*z, 2*x+2*y+z-1)
sage: J.elimination_ideal(x)
Ideal (y + 3*z - 1) of Multivariate Polynomial Ring in x, y, z
over Rational Field
sage: J.elimination_ideal([x,y])
Ideal (0) of Multivariate Polynomial Ring in x, y, z over Rational Field

Mathematically, we interpret these results as follows: we have J ∩ Q[y, z] =
〈y + 3z − 1〉 ⊂ Q[y, z] and J ∩Q[z] = Q[z], i.e., Q[z] ⊂ J . (Indeed, the ideal 〈0〉
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corresponds to the system reduced to the sole trivial equation 0 = 0, of which
any polynomial is solution.) This is clearly not a recommended way of solving
linear systems: the specific tools discussed in Chapter 8 are much more efficient!

For a slightly less trivial example, let us go back to the system (S1) from
Section 9.2.3 (see Figure 9.1a):

sage: R.<x,y> = QQ[]
sage: J1 = ideal(x^2 + y^2 - 1, 16*x^2*y^2 - 1)

Eliminating y yields an ideal of Q[x] — therefore principal — generated by a
polynomial g whose roots are the abscissas

±
√

2±
√

3
2

of the eight solutions of (S1):
sage: g = J1.elimination_ideal(y).gens(); g
[16*x^4 - 16*x^2 + 1]
sage: SR(g[0]).solve(SR(x)) # solves by radicals
[x == -1/2*sqrt(sqrt(3) + 2), x == 1/2*sqrt(sqrt(3) + 2),
x == -1/2*sqrt(-sqrt(3) + 2), x == 1/2*sqrt(-sqrt(3) + 2)]

By re-injecting into (S1) each of the found values of x, we obtain a (redundant)
system of equations in y only, which allows to compute the corresponding values
of y.

Eliminating = Projecting. The above example shows that eliminating y in a
system corresponds geometrically to the projection π of the solution variety on a
hyperplane of equation y = constant. However, let us now consider separately
the ideals C = 〈x2 + y2 − 1〉 and H = 〈16x2y2 − 1〉 whose sum is J1, and, once
again, let us eliminate y:

sage: C.elimination_ideal(y).gens()
[0]
sage: H.elimination_ideal(y).gens()
[0]

Insofar as C is concerned, this is no surprise. The circle {(x, y) ∈ R2 | x2 +y2 = 1}
projects on [−1; 1], however it is clear that any value of x can be “re-injected” in
the unique equation x2 + y2 − 1 = 0, and the obtained equation in y has complex
solutions. The elimination of y in C corresponds to the projection on the first
coordinate of the complex circle {(x, y) ∈ C2 | x2 +y2 = 1}, which is C altogether.

The case of H is a bit more intricate. The equation 16x2y2 = 1 has no
solution, even complex, for x = 0. We have then

VC(H ∩Q[x]) = C ( π(VC(H)) = C \ {0}.

Indeed, the projection of the hyperbola, C \ {0}, is not an algebraic subvariety.
Conclusion: elimination really corresponds to projection (over an algebraically
closed field), but it does not compute the exact projection, only the Zariski closure
of it.
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Figure 9.2 – A part of the curve in (x, y, t) defined by (9.6) and its projection on the
plane t = 0.

Applications: Plane Geometry. If X ⊂ Ck is given by a rational parametri-
sation

X = {
(
f1(t), f2(t), . . . , fk(t)

)
}, f1, . . . , fk ∈ Q(t1, . . . , tn),

finding an implicit equation for X consists of projecting the part of Ck+n defined
by the equations xi = fi(t) on the subspace (x1, . . . , xk) ' Ck. This is an
elimination problem. Let us consider the classical parametrisation of the circle

x = 1− t2
1 + t2

y = 2t
1 + t2

(9.6)

associated to the expression of (sin θ, cos θ) in terms of tan(θ/2). It translates
into polynomial relations defining an ideal of Q[x, y, t]:

sage: R.<x,y,t> = QQ[]
sage: Param = R.ideal((1-t^2)-(1+t^2)*x, 2*t-(1+t^2)*y)

Let us eliminate t:
sage: Param.elimination_ideal(t).gens()
[x^2 + y^2 - 1]

We obtain an equation of the circle. We can notice that this equation vanishes at
(x, y) = (−1, 0), although the parametrisation (9.6) does not hit that point, since
the circle minus a point is not an algebraic subvariety.

Another example: let us draw a few of the circles (Ct) of equation

Ct : x2 + (y − t)2 = t2 + 1
2 (9.7)

using Sage commands (see Figure 9.3):
sage: R.<x,y,t> = QQ[]
sage: eq = x^2 + (y-t)^2 - 1/2*(t^2+1)
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Figure 9.3 – A family of circles and its envelope.

sage: fig = add((eq(t=k/5)*QQ[x,y]).plot() for k in (-15..15))
sage: fig.show(aspect_ratio=1, xmin=-2, xmax=2, ymin=-3, ymax=3)

We see that the envelope of the family of circles (Ct) appears, a “limit curve”
tangent to all Ct, which we can describe informally as the set of “intersection
points of circles infinitely close” to the family.

More precisely, if f is a differentiable function, and if the curve Ct is defined
by f(x, y, t) = 0 for any t, the envelope of (Ct) is the set of points (x, y) such that

∃t, f(x, y, t) = 0 and ∂f

∂t
(x, y, t) = 0. (9.8)

In the case of circles (9.7), the function f(x, y, t) is a polynomial. Their envelope
is the projection on the (x, y) plane of the solutions from (9.8), thus we can
determine an equation of it via the following elimination computation:

sage: env = ideal(eq, eq.derivative(t)).elimination_ideal(t)
sage: env.gens()
[2*x^2 - 2*y^2 - 1]

It remains only to draw the curve found:
sage: env.change_ring(QQ[x,y]).plot((x,-2,2),(y,-3,3))

Resultant and Elimination. The elimination performed in the preceding
examples is implicitly based on Gröbner bases computed automatically by Sage.
Yet, we have already encountered in this book another elimination tool: the
resultant.

Let us consider two non constant polynomials p, q ∈ K[x1, . . . , xn, y]. We
denote by Resy(p, q) the resultant of p and q, considered as polynomials in the
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Inequalities

Let us consider the triangle with vertices A = (0, 0), B = (1, 0) and
C = (x, y). Assume the angles B̂AC and ĈBA are equal, and let us try to
prove computationally that we have an isosceles triangle. By introducing
the parameter t = tan Â = tan B̂, the problem is encoded by the equations
y = tx = t(1− x), and we have to show that they imply

x2 + y2 = (1− x)2 + y2.

With Sage, we obtain:

sage: R.<x,y,t> = QQ[]
sage: J = (y-t*x, y-t*(1-x))*R
sage: (x^2+y^2) - ((1-x)^2+y^2) in J
False

This could have been expected: when x = y = t = 0, the hypotheses are
satisfied, but the conclusion is false! Geometrically, we have to exclude the
case of flat triangles, which can have two equal angles without being isosceles.

How to encode the constraint t 6= 0? The trick is to introduce an auxiliary
variable u, and to force tu = 1. The computation becomes:

sage: R.<x,y,t,u> = QQ[]
sage: J = (y-t*x, y-t*(1-x), t*u-1)*R
sage: (x^2+y^2) - ((1-x)^2+y^2) in J
True

and we now have the expected result. Let us remark by the way that we can
simultaneously force several expressions to not vanish with only one auxiliary
variable, using an equation like t1t2 · · · tnu = 1.

single variable y, with coefficients in K[x1, . . . , xn]. We have seen in §7.3.3 that
it is a polynomial from K[x1, . . . , xn], which vanishes at u ∈ Kn if and only if
p(u1, . . . , un, y) and q(u1, . . . , un, y) (which are two polynomials of K[y]) have
a common zero, except maybe when the leading coefficients (in y) of p and q
themselves vanish at u.

Some of our elimination computations involving only two polynomials can be
replaced by resultants. For example, the equation of the envelope of circles (9.7)
is

sage: eq.derivative(t).resultant(eq, t)
x^2 - y^2 - 1/2

The resultant Resy(p, q) is an element of the elimination ideal 〈p, q〉∩K[x1, . . . , xn].
Even in the case n = 1 (where the elimination ideal is principal), though, and even
if the leading coefficients with respect to y of p and q are coprime, the resultant
does not necessarily generate the elimination ideal:

sage: R.<x,y> = QQ[]
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sage: p = y^2 - x; q = y^2 + x
sage: p.resultant(q, y)
4*x^2
sage: ideal(p, q).elimination_ideal(y)
Ideal (x) of Multivariate Polynomial Ring in x, y over Rational Field

9.2.5 Zero-Dimensional Systems
We can deal with many problems just with the computation of elimination ideals,
and Sage does not provide other “black-box” tools to solve general polynomial
systems. The situation is somewhat different for zero-dimensional systems.

An ideal J ⊂ K[x] is said to have dimension zero when the quotient K[x]/J is
a vector space of finite dimension. Over an algebraically closed field, it is equivalent
to say that the variety V (J) contains a finite number of points. For example,
the systems (9.1) and (9.3) generate ideals of dimension zero — we say they are
themselves zero-dimensional. On the contrary, the ideal 〈(x2 + y2)(x2 + y2 + 1)〉
of Q[x, y] is of dimension 1, despite its only real solution being (0, 0):

sage: R.<x,y> = QQ[]
sage: ((x^2 + y^2)*(x^2 + y^2 + 1)*R).dimension()
1

Zero-dimensional systems can be solved more explicitly than what is possible
with the general tools from the previous section. We have already seen several of
these methods in practice on the example of §9.2.1.

Enumerating the Solutions. First, having a finite number of solutions enables
us to enumerate them, exactly or approximately.

The Sage expression J.variety(L) computes the variety VL(J). It raises
an error if J is not zero-dimensional. By default, it looks for solutions with
coordinates in the base field of the polynomial ring over which the system is
defined. For example, the subvariety of Qn defined by J1 is empty:

sage: R.<x,y> = QQ[]
sage: J1 = (x^2 + y^2 - 1, 16*x^2*y^2 - 1)*R
sage: J1.variety()
[]

But, like the roots method for univariate polynomials, variety works for any
kind of domain L. The most important case for now is the field of algebraic
numbers. We can indeed show that the solutions of a zero-dimensional system
with coefficients in K have coordinates in the algebraic closure of K. Therefore,
it is possible to compute exactly the complex variety VC(J) = VQ̄(J) associated
to an ideal J ⊂ Q[x]:

sage: J1.variety(QQbar)[0:2]
[{y: -0.9659258262890683?, x: -0.2588190451025208?},
{y: -0.9659258262890683?, x: 0.2588190451025208?}]

Exercise 36. Show that the solutions of (S1) have coordinates in Q[
√

2−
√

3], and
give them in terms of radicals.
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Triangular Decomposition. Internally, J.variety(L) goes through a trian-
gular decomposition of the ideal J . This decomposition is interesting in itself,
since it sometimes gives a description of the variety J which is better for the
rest of the computation, or even easier to grasp than the output of variety
(see §9.2.1), particularly in case of numerous solutions.

A polynomial system is called triangular when of the following form
p1(x1) := xd1

1 + a1,d1−1 x
d1−1
1 + · · ·+ a1,0 = 0

p2(x1, x2) := xd2
2 + a2,d2−1(x1)xd2−1

2 + · · ·+ a2,0(x1) = 0
...

pn(x1, . . . , xn) := xdnn + an,dn−1(x1, . . . , xn−1)xdn−1
n + · · · = 0

or said otherwise, if each polynomial pi only involves the variables x1, . . . , xi, and
is monic in the variable xi. When a zero-dimensional system has such a form,
its resolution reduces to a finite number of univariate polynomial equations to
solve: it suffices to find the roots x1 of p1, to substitute them into p2, to then
find the roots x2 of the latter, and so on. This strategy works both when looking
for exact and approximate (numerical) solutions.

Not every system is equivalent to a triangular system. Consider for example
the ideal J defined by:

sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: C = ideal(x^2+y^2-1)
sage: D = ideal((x+y-1)*(x+y+1))
sage: J = C + D

For an image, see Figure 9.4 (left):

sage: opts = {'axes':True, 'gridlines':True, 'frame':False,
....: 'aspect_ratio':1, 'axes_pad':0, 'xmin':-1.3, 'xmax':1.3,
....: 'ymin':-1.3, 'ymax':1.3, 'fontsize': 8}
sage: show(C.plot() + D.plot(), figsize=[2,2], **opts)

The variety V (J) contains two points of abscissa 0 but only one point of abscissa
−1, and likewise, one point of ordinate −1 against two points of zero ordinate.
Hence the ideal J cannot be described by a triangular system.

We can however show that any zero-dimensional ideal can be written as a
finite intersection of ideals generated by triangular systems. The triangular_
decomposition method computes such a decomposition:

sage: J.triangular_decomposition()
[Ideal (y, x^2 - 1) of Multivariate Polynomial Ring in x, y
over Rational Field,
Ideal (y^2 - 1, x) of Multivariate Polynomial Ring in x, y
over Rational Field]

Geometrically, we obtain a representation of the variety V (J) as a union of
varieties associated to simpler systems, and often simple enough to give a good
description of the solutions.
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Figure 9.4 – In each case, the variety associated to the ideal J from the text is the
intersection of a circle and the union of two lines.

Some Difficulties. We can rightfully wonder about the interest of the triangular
decomposition to enumerate the solutions. After all, given a zero-dimensional
system, it is always possible to find a univariate polynomial whose roots are
exactly the first coordinates of the solutions, by computing some elimination ideal.
By substituting its roots into the system, we decrease the number of variables,
which allows to iterate the process, until we have completely solved the system.

However, the “substitution” in the system by propagating the partial results
might be intricate. Let us slightly modify the preceding system:

sage: D = ideal((x+2*y-1)*(x+2*y+1)); J = C + D
sage: J.variety()
[{y: -4/5, x: 3/5}, {y: 0, x: -1}, {y: 0, x: 1}, {y: 4/5, x: -3/5}]
sage: [T.gens() for T in J.triangular_decomposition()]
[[y, x^2 - 1], [25*y^2 - 16, 4*x + 3*y]]

The shape of the triangular decomposition remains the same: for each component,
we have an equation involving y only, and a second equation enabling to express
x in terms of y.

Thus let us eliminate x, to get an equation in y only, which is the product of
the two above equations in y:

sage: Jy = J.elimination_ideal(x); Jy.gens()
[25*y^3 - 16*y]

To find x, it now suffices to substitute the roots of this equation into the equations
defining the ideal J . The first equation, x2 + y2 − 1 = 0, yields:

sage: ys = QQ['y'](Jy.0).roots(); ys
[(4/5, 1), (0, 1), (-4/5, 1)]
sage: QQ['x'](J.1(y=ys[0][0])).roots()
[(-3/5, 1), (-13/5, 1)]

One of these two values is correct — we have (−3/5, 4/5) ∈ V (J) — but the
other one does not correspond to any solution: we have to check the found values
using the second initial equation, (x+ 2y − 1)(x+ 2y + 1), to eliminate it.
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The problem becomes harder if one solves the univariate equations numerically,
which is sometimes necessary due to the cost of operations on algebraic numbers:

sage: ys = CDF['y'](Jy.0).roots(); ys
[(-0.8000000000000002, 1), (0.0, 1), (0.8, 1)]
sage: [CDF['x'](p(y=ys[0][0])).roots() for p in J.gens()]
[[(-0.5999999999999999 - 1.306289919090511e-16*I, 1),
(0.6000000000000001 + 1.3062899190905113e-16*I, 1)],
[(0.6000000000000001 - 3.1350958058172247e-16*I, 1),
(2.600000000000001 + 3.135095805817224e-16*I, 1)]]

Here, by substituting y ' −0.8 into the two generators of J , we find two values
of x near from 0.6. How to ensure they are approximations of the coordinate x
of the same exact solution (x, y) ' (0.6,−0.8), and not some spurious roots as
in the preceding example? This phenomenon gets trickier when the number of
variables and equations grows. However, when the system is triangular, only one
equation has to be considered at each substitution step, and since this equation
is monic, the numerical approximations do not change the number of solutions.

Let us continue. For the following system, J.variety() computes (exactly) a
triangular decomposition of J , then finds numerically the real solutions of the
obtained system(s). This yields a unique real solution:

sage: R.<x,y> = QQ[]; J = ideal([ x^7-(100*x-1)^2, y-x^7+1 ])
sage: J.variety(RealField(51))
[{y: 396340.890166545, x: -14.1660266425312}]

Yet, by performing the computation exactly until the end, we see there are three
real solutions, and the value of x in the above numerical solution is completely
wrong:

sage: J.variety(AA)
[{x: 0.00999999900000035?, y: -0.999999999999990?},
{x: 0.01000000100000035?, y: -0.999999999999990?},
{x: 6.305568998641385?, y: 396340.8901665450?}]

Conclusion: the triangular decomposition does not solve all problems, and we
should be careful in the interpretation of approximate computations.

A large number of other methods exist to parametrise and approximate the
solutions of zero-dimensional systems, more or less well suited to a given problem,
which are not implemented within Sage. Exercise 37 gives an overview of some
ideas used.

Advanced mathematics

Sage also provides many functions for commutative algebra and algebraic
geometry, which go beyond the scope of this book. We invite the interested
reader to explore the documentation of the polynomial ideals, and that of
the sage.schemes module. Other functionalities are also available through
the interfaces of the specialised tools Singular, CoCoA and Macaulay2.
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Quotient Algebra. The quotients by zero-dimensional ideals are much easier
to manipulate than those by general ideals, since the computations in the quotient
algebra reduce to linear algebra in finite dimension.

If J ⊂ K[x] is a zero-dimensional ideal, the dimension dimK K[x]/J of the
quotient algebra as a K-vector space bounds the number of points of V (J).
(Indeed, for any u ∈ V (J), there exists a polynomial with coefficients in K which
equals 1 at u and 0 at any other point of V (J). Two such polynomials cannot be
equivalent modulo J .) We can consider this dimension as the number of solutions
“with multiplicity” of the system over the algebraic closure of K. For example,
we have noticed that the four solutions of system (S2) introduced in §9.2.3 are
each one the “double” intersection of both curves. This explains the following:

sage: len(J2.variety(QQbar)), J2.vector_space_dimension()
(4, 8)

The normal_basis method computes a list of monomials whose projections
on K[x]/J constitute a basis:

sage: J2.normal_basis()
[x*y^3, y^3, x*y^2, y^2, x*y, y, x, 1]

The returned basis depends on the monomial order chosen at the construction of
the polynomial ring; we will describe it more precisely in §9.3.3.

Exercise 37. Let J be a zero-dimensional ideal of Q[x, y]. Let χx be the character-
istic polynomial of the linear transformation

mx : Q[x, y]/J → Q[x, y]/J
p+ J 7→ xp+ J.

Compute χx in the case J = J2 = 〈x2 + y2 − 1, 4x2y2 − 1〉. Show that every root of χx
is the abscissa of a point of the variety VC(J).

9.3 Gröbner Bases
So far, we have used as black boxes the functions provided by Sage for the
algebraic elimination and the resolution of polynomial systems. This section
introduces some of the underlying mathematical and algorithmic tools. The goal
is both to be able to call directly these tools, and to make a wise use of the
high-level functions seen before.

The methods used by Sage for computation with ideals and elimination are
based on the concept of Gröbner basis. We can consider a Gröbner basis as a
multivariate extension of the representation by principal generator of ideals of
K[x]. The main problem of this section is to define and compute a normal form
for the elements of quotient algebras from K[x]. Our point of view remains that
of the user: we define Gröbner bases, we show how to obtain them with Sage and
how they can be useful, but we do not discuss the algorithms used to compute
them.
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Main monomial orders, with the example of Q[x, y, z]

lex xα < xβ ⇐⇒ α1 < β1 or (α1 = β1 and α2 < β2) or . . .
or (α1 = β1, . . . , αn−1 = βn−1 and αn < βn)

x3 > x2y > x2z > x2 > xy2 > xyz > xy > xz2 > xz > x > y3

> y2z > y2 > yz2 > yz > y > z3 > z2 > z > 1

invlex xα < xβ ⇐⇒ αn < βn or (αn = βn and αn−1 < βn−1) or . . .
or (αn = βn, . . . , α2 = β2 and α1 < β1)

z3 > yz2 > xz2 > z2 > y2z > xyz > yz > x2z > xz > z > y3

> xy2 > y2 > x2y > xy > y > x3 > x2 > x > 1

deglex xα < xβ ⇐⇒ |α| < |β| or (|α| = |β| and xα <lex x
β)

x3 > x2y > x2z > xy2 > xyz > xz2 > y3 > y2z > yz2 > z3 > x2

> xy > xz > y2 > yz > z2 > x > y > z > 1

degrevlex xα < xβ ⇐⇒ |α| < |β| or (|α| = |β| and xα >invlex x
β)

x3 > x2y > xy2 > y3 > x2z > xyz > y2z > xz2 > yz2 > z3 > x2

> xy > y2 > xz > yz > z2 > x > y > z > 1

Construction of monomial orders

object representing a predefined order on n variables TermOrder('nom', n)
matrix order: xα <M xβ ⇐⇒ Mα <lex Mβ TermOrder(M)

blocks: xαyβ < xγyδ ⇐⇒ α <1 γ or (α = γ, β <2 δ) T1 + T2

Table 9.5 – Monomial orders.

9.3.1 Monomial Orders
A monomial order or admissible order is a total order on the monomials xα of a
polynomial ring, which satisfies

xα < xβ =⇒ xα+γ < xβ+γ and γ 6= 0 =⇒ 1 < xγ (9.9)

for all exponents α,β,γ. Equivalently, we can consider < as an order on the
exponents α ∈ Nn or on the terms cxα. The leading monomial, leading coefficient
and leading term of a polynomial p (see §9.1.3) for the current monomial order
are those of largest exponent; we denote them respectively by lm p, lc p and lt p.

The first condition in (9.9) states that the monomial order should be compatible
with products: multiplying by a fixed monomial does not change the order. The
second condition implies that < is a well-order, i.e., an infinite sequence of
decreasing monomials does not exist. Let us notice that the only monomial order
on K[x] is the usual one xn > xn−1 > · · · > 1.

We have seen in §9.1.1 that Sage allows an order to be chosen when defining
a polynomial ring via constructions like

sage: R.<x,y,z,t> = PolynomialRing(QQ, order='lex')

Table 9.5 lists the main predefined monomial orders6: lex is the lexicographic
order of the exponents, invlex is the lexicographic order of exponents read

6Sage also allows orders (called “local”) where 1 is the largest monomial instead of the
smallest one. For example, in the order neglex on Q[x, y, z], we have 1 > z > z2 > z3 > y >
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from right to left, and deglex sorts the monomials first by total degree, then
by lexicographic order. The definition of degrevlex is slightly more complex:
the monomials are sorted by total degree, then by decreasing lexicographic order
of the exponents read from the right. This strange order is nevertheless used by
default when we omit the order option, since it is more efficient than other orders
for some computations.

We generally choose (but not always!) simultaneously the order of variables
of the ring and that of monomials such that x1 > x2 > · · · > xn, and we then
often speak, for example, of the “lex order such that x > y > z” instead of the
“lex order on K[x, y, z]”. The predefined orders lex, deglex and degrevlex obey
that convention; for the invlex order on K[x, y, z], it is also the lex order such
that z > y > x, i.e., the lex order on K[z, y, x].

9.3.2 Division by a Family of Polynomials
A monomial order < being fixed, let G = {g1, g2, . . . , gs} be a finite set of
polynomials from K[x]. We denote by 〈G〉 = 〈g1, g2, . . . , gs〉 the ideal of K[x]
generated by G.

The division of a polynomial p ∈ K[x] by G is a multivariate analogue of
the Euclidean division in K[x]. Like the latter, it associates to p a remainder,
given in Sage by the expression p.reduce(G), which is a “smaller” polynomial
belonging to the same equivalence class modulo 〈G〉:

sage: ((x+y+z)^2).reduce([x-t, y-t^2, z^2-t])
2*z*t^2 + 2*z*t + t^4 + 2*t^3 + t^2 + t

The remainder is obtained by subtracting from p, while possible, multiples of
elements of G whose leading term cancels a term of p in the subtraction. Contrary
to the univariate case, it might happen that one can thus cancel a term of p, but
not the leading one: we then only require to cancel the largest term according to
the monomial order.

Formally, for p ∈ K[x], let us denote by ltG p the term of p of maximal
exponent, which is divisible by a leading term of an element of G. Let us call
elementary reduction each transformation of the form

p 7→ p̃ = p− cxα g, where g ∈ G and ltG p = cxα lt g. (9.10)

An elementary reduction leaves unchanged the equivalence class of p modulo 〈G〉,
and makes the largest cancelled monomial of p disappear: we have

p̃− p ∈ 〈G〉 and ltG p̃ < ltG p.

Since< is a well-order, it is not possible to apply to a polynomial an infinite number
of successive elementary reductions. Each sequence of elementary reductions ends

yz > yz2 > y2 > y2z > y3 > x > xz > xz2 > xy > xyz > xy2 > x2 > x2z > x2y > x3. The
local orders are not well-orders in the sense of definition (9.9), and we do not use them in this
book; however the curious reader will complete Table 9.5 by using the test_poly function
defined in §9.1.1.
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thus on a polynomial that cannot be reduced further, and which is the remainder
of the division.

Let us notice that this process generalises some familiar elimination methods
both for univariate polynomials and linear systems. In one variable, the division
of a polynomial p by a singleton G = {g} reduces exactly to the Euclidean division
of p by g. In the other extreme case of multivariate polynomials, but whose
monomials are all of degree 1, it becomes identical to the elementary reduction of
the Gauss-Jordan method.

But contrary to what happens in those particular cases, in general, the
remainder depends on the choice of the elementary reductions. (We then say that
the system (9.10) of rewriting rules is not confluent.) Thus, changing the order
in which we give the elements of G leads in the following example to different
choices of reduction:

sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: (g, h) = (x-y, x-y^2); p = x*y - x
sage: p.reduce([g, h]) # two reductions by h
y^3 - y^2
sage: p.reduce([h, g]) # two reductions by g
y^2 - y

Even if the elements of G are considered in a deterministic order (such that
the result is unique for given p and G), how to ensure, for example, that the
chosen sequence of elementary reductions of p by {g, h} will discover the following
relation, which shows that p ∈ 〈g, h〉?

sage: p - y*g + h
0

9.3.3 Gröbner Bases
The limitations of multivariate division explain the difficulty mentioned in §9.2.3
to obtain a normal form for the elements of the algebras K[x]/J : dividing by
the generators of the ideal is not enough... At least in general! Indeed, some
particular systems of generators exist for which the division is confluent, and
computes a normal form. These systems are called Gröbner bases.

Staircases. A pleasant way to grasp Gröbner bases goes through the notion
of ideal staircase. Let us attach to each non-zero polynomial from K[x1, . . . , xn]
a point of Nn given by its leading exponent, and let us draw the part E ⊂ Nn
occupied by an ideal J (see Figures 9.5 to 9.7). The resulting graph (which depends
on the monomial order) has a staircase shape: indeed, we have α+ Nn ⊂ E for
any α ∈ E. The elements of J \ {0} are in the grey zone, above the staircase or
at its frontier. The points strictly “under the staircase” correspond exclusively to
polynomials from K[x] \ J , but not all the polynomials from K[x] \ J are under
the staircase.

For example, in a polynomial of the ideal 〈x3, xy2z, xz2〉, each monomial,
either a leading monomial or not, is multiple of one of the polynomials x3, xy2z
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Figure 9.5 – Ideal staircases generated by monomials.
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Figure 9.6 – Ideal staircases of Q[x, y] encountered in this chapter. In the three cases,
the staircases and the location of generators are the same for the monomial orders lex,
deglex and degrevlex.
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Figure 9.7 – Staircases of the ideal 〈xy + x+ y2 + 1, x2y + xy2 + 1〉 ⊂ Q[x, y] relative to
different monomial orders.

In each diagram, the grey zone corresponds to the leading terms of elements of the ideal. The
black squares give the location of generators used to describe it.
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and xz2. The leading monomials are thus exactly the xαyβzγ verifying one of
the inequalities (α, β, γ) ≥ (3, 0, 0), (α, β, γ) ≥ (1, 2, 1) or (α, β, γ) ≥ (1, 0, 2)
component by component (Figure 9.5). A polynomial whose leading exponent
does not satisfy these conditions, for example x2 +xz2 if the monomial order is the
lexicographic one with x > y > z, cannot belong to that ideal. Some polynomials
like x3 + x are not in the ideal either, despite a leading monomial above the
staircases. The situation is analogous for any ideal generated by monomials.

For a random ideal, the staircase structure cannot be easily read on the
generators. For instance, by denoting δ1, . . . , δs the leading exponents of the
generators, we have

⋃s
i=1(δi + Nn) ( E in all examples of Figures 9.6 and 9.7

except the second one. We can nevertheless show that E can always be written
as a finite union of sets of the form α+Nn, i.e., intuitively, that the staircase has
a finite number of corners. This result is sometimes called Dickson’s lemma.

Gröbner Bases. A Gröbner basis is simply a family of generators that captures
the shape of the staircase, more precisely that contains a polynomial corresponding
to each corner.

Definition. A Gröbner basis of an ideal J ⊂ K[x] relative to a monomial
order < is a finite part G of J such that for any non-zero p ∈ J , there exists
g ∈ G whose leading monomial lm g (for the order <) divides lm p.

Checking whether the generators defining an ideal form a Gröbner basis is
done in Sage with the basis_is_groebner method. We have already noticed
that any set of monomials is a Gröbner basis:

sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: R.ideal(x*y^4, x^2*y^3, x^4*y, x^5).basis_is_groebner()
True

However, the system {x2 + y2 − 1, 16x2y2 − 1} which encodes the intersection of
the circle and the hyperbolas of Figure 9.1a is not a Gröbner basis:

sage: R.ideal(x^2+y^2-1, 16*x^2*y^2-1).basis_is_groebner()
False

According to the staircase shape (Figure 9.6), it lacks a polynomial from J1 of
leading monomial y4.

The reasoning based on Dickson’s lemma, mentioned above, shows that every
ideal has Gröbner bases7. Let us compute Gröbner bases of J1 and of the other
ideals whose staircases are shown in Figure 9.6. In the case of J1, it yields:

sage: R.ideal(x^2+y^2-1, 16*x^2*y^2-1).groebner_basis()
[x^2 + y^2 - 1, y^4 - y^2 + 1/16]

The leading monomials x2 and y4 appear as expected. Their presence explains
the way the staircase closes itself on the axes; we will see it is characteristic of
zero-dimensional systems. For the double hyperbola alone, we find:

7We can see this result as an effective version of the Hilbert Basis Theorem, which states
that ideals from K[x] are generated by a finite number of elements. A classical proof of this
theorem is very similar to the construction of a Gröbner basis for the lexicographic order.
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sage: R.ideal(16*x^2*y^2-1).groebner_basis()
[x^2*y^2 - 1/16]

i.e., a multiple of the generator. In general, each singleton is a Gröbner basis
by itself. The third example shows that a Gröbner basis might contain more
polynomials than a system of generators:

sage: R.ideal(x^2+y^2-1, (x+y)^2-1).groebner_basis()
[x^2 + y^2 - 1, x*y, y^3 - y]

Due to the simplicity of the previous examples, these three Gröbner bases do
not depend much, if at all, on the monomial order. The general situation is quite
different. Figure 9.7 represents the staircases associated to the same ideal from
Q[x, y] for three classical monomial orders. Corresponding Gröbner bases are:

sage: R_lex.<x,y> = PolynomialRing(QQ, order='lex')
sage: J_lex = (x*y+x+y^2+1, x^2*y+x*y^2+1)*R_lex; J_lex.gens()
[x*y + x + y^2 + 1, x^2*y + x*y^2 + 1]
sage: J_lex.groebner_basis()
[x - 1/2*y^3 + y^2 + 3/2, y^4 - y^3 - 3*y - 1]

sage: R_invlex = PolynomialRing(QQ, 'x,y', order='invlex')
sage: J_invlex = J_lex.change_ring(R_invlex); J_invlex.gens()
[y^2 + x*y + x + 1, x*y^2 + x^2*y + 1]
sage: J_invlex.groebner_basis()
[y^2 + x*y + x + 1, x^2 + x - 1]

sage: R_drl = PolynomialRing(QQ, 'x,y', order='degrevlex')
sage: J_drl = J_lex.change_ring(R_drl); J_drl.gens()
[x*y + y^2 + x + 1, x^2*y + x*y^2 + 1]
sage: J_drl.groebner_basis()
[y^3 - 2*y^2 - 2*x - 3, x^2 + x - 1, x*y + y^2 + x + 1]

The Gröbner basis for the lex order clearly demonstrates the rewriting rule
x = 1

2 y
3 − y2 − 3

2 , thanks to which we can express the elements of the quotient
algebra in terms of the variable y only. The stretched out form of the corresponding
staircase translates this rule. Similarly, the Gröbner basis for the invlex order
indicates that we can eliminate powers of y via the equality y2 = −xy − x− 1.
We will come back to this at the end of next section.

9.3.4 Gröbner Basis Properties

Gröbner bases are used to implement the operations studied in Section 9.2. We
use them in particular to compute normal forms for ideals in polynomial rings
and for elements in quotients by these ideals, to eliminate variables in polynomial
systems, or to determine characteristics of the solutions such as their dimension.
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Reduction

multivariate division of p by G p.reduce(G)
inter-reduced generators J.interreduced_basis()

Gröbner bases

Gröbner basis test J.basis_is_groebner()
(reduced) Gröbner basis J.groebner_basis()

change of order towards lex J.transformed_basis()
change of order R1 → R2 J.transformed_basis('fglm', other_ring=R2)

Table 9.6 – Gröbner bases.

Division by a Gröbner Basis. Division by a Gröbner basis G of a polynomial
from 〈G〉 cannot end on a non-zero element of 〈G〉. This is an immediate
consequence of the definition: indeed, such an element would be above the
staircase associated to 〈G〉, thus still divisible by G. Hence every element from
〈G〉 reduces to zero in the division by G. In particular, a Gröbner basis of an
ideal J generates J .

Likewise, the division of a polynomial p /∈ J by a Gröbner basis of J can only
end on a polynomial “under the staircase”, moreover two distinct polynomials
“under the staircase” belong to different equivalence classes modulo J (since their
difference is still “under the staircase”). The division by a Gröbner basis therefore
provides a normal form for the elements of the quotient K[x]/J , and this holds
independently of the order in which we perform the elementary reductions. The
normal form of an equivalence class p+ J is its unique representative under the
staircase, or zero. This is the normal form computed by the operations in the
quotient algebra presented in §9.2.3. To continue the example of Figure 9.7, the
reduction

sage: p = (x + y)^5
sage: J_lex.reduce(p)
17/2*y^3 - 12*y^2 + 4*y - 49/2

decomposes into a Gröbner basis computation, followed by a division:

sage: p.reduce(J_lex.groebner_basis())
17/2*y^3 - 12*y^2 + 4*y - 49/2

The result of a projection onto the quotient is essentially the same:

sage: R_lex.quo(J_lex)(p)
17/2*ybar̂ 3 - 12*ybar̂ 2 + 4*ybar - 49/2

Naturally, changing the monomial order yields another normal form:

sage: R_drl.quo(J_drl)(p)
5*ybar̂ 2 + 17*xbar + 4*ybar + 1

The monomials appearing in the normal form correspond to the points under the
staircase.
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Hence, the ideal J is zero-dimensional if and only if the number of points
under its staircase is finite, and this number of points is the dimension of the
quotient K[x]/J . In this case, the basis returned by the method normal_basis
described in §9.2.5 is simply the set of monomials under the staircase for the
associated monomial order:

sage: J_lex.normal_basis()
[y^3, y^2, y, 1]
sage: J_invlex.normal_basis()
[x*y, y, x, 1]
sage: J_drl.normal_basis()
[y^2, y, x, 1]

Let us notice that the number of monomials under the staircase is independent of
the monomial order.

Dimension. We are now equipped to give a general definition of the dimension
of an ideal: J has dimension d when the number of points under the staircase,
corresponding to monomials of total degree at most t, is of order td when t→∞.
For example, the ideal 〈16x2y2 − 1〉 (Figure 9.6) has dimension 1:

sage: ideal(16*x^2*y^2-1).dimension()
1

Indeed, the number of monomials m under the staircase such that degxm +
degym ≤ t equals 4t − 2 for t ≥ 3. Likewise, the two ideals of Figure 9.5 have
respectively dimension 1 and 2. We can show that the dimension does not depend
on the monomial order, and corresponds — degeneracies excepted — to the
“geometric” dimension of the associated variety.

Reduced Bases. A finite set of polynomials containing a Gröbner basis is itself
a Gröbner basis, therefore a non-zero ideal has an infinite number of Gröbner
bases. A Gröbner basis G = {g1, . . . , gs} is called reduced when

• the leading coefficients of gi are all 1 (and 0 /∈ G);

• and no term of gi is reducible by the rest of the basis G \ {gi} in the sense
of the rules (9.10).

With a fixed monomial order, each ideal has a unique reduced Gröbner basis. For
example, the reduced Gröbner basis of the ideal 〈1〉 is the singleton {1}, whatever
the monomial order. The reduced Gröbner bases therefore provide a normal form
for all ideals of K[x].

A reduced Gröbner basis is minimal in the sense that, if we remove any
element, what remains is no longer a system of generators of the ideal. Concretely,
it contains exactly one polynomial per “corner” of the staircase. It can be
computed from any Gröbner basis G by replacing each element g ∈ G by its
remainder for the division by G \ {g}, and so on while possible. This is what the
interreduced_basis method does. The polynomials reducing to zero are erased.
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Elimination. The lexicographic monomial orders have the following funda-
mental property: if G is a Gröbner basis for the lexicographic order of J ⊂
K[x1, . . . , xn], then the G∩K[xk+1, . . . , xn] are Gröbner bases for the elimination
ideals8 J ∩K[xk+1, . . . , xn]. A lexicographic Gröbner basis splits into blocks, the
last one of which depends only on xn, the penultimate on xn and xn−1, and so
on9:

sage: R.<t,x,y,z> = PolynomialRing(QQ, order='lex')
sage: J = R.ideal(t+x+y+z-1, t^2-x^2-y^2-z^2-1, t-x*y)
sage: [u.polynomial(u.variable(0)) for u in J.groebner_basis()]
[t + x + y + z - 1,
(y + 1)*x + y + z - 1,
(z - 2)*x + y*z - 2*y - 2*z + 1,
(z - 2)*y^2 + (-2*z + 1)*y - z^2 + z - 1]

In this example, the last polynomial of the basis only depends on y and z. It is
preceded by a block of two polynomials in x, y and z, and the first polynomial
contains all variables. The successive elimination ideals can be seen immediately.

We have seen however (§9.2.5) that the elimination ideals do not provide a
perfect description of the ideal. Here, the block of polynomials in z only is empty,
thus any value of z, except maybe a finite number, appears as last coordinate
of a solution. We are tempted to express the possible values of y for each z
thanks to the last equation. We get two values, except for z = 2, for which
only y = −1 works. Only when we get to the preceding equation do we notice
that the choice z = 2 is contradictory. Inversely, again from the last equation,
y = −1 implies z = 2, and is thus excluded. It finally occurs that none of the
leading terms of the polynomials (written in their respective main variable, as in
the above Sage output) vanishes for z 6= 2.

Exercise 38 (Trigonometric relations). Write (sin θ)6 as a polynomial in u(θ) =
sin θ + cos θ and v(θ) = sin(2θ) + cos(2θ).

9.3.5 Computations
We refer the reader interested in algorithms computing Gröbner bases to the ref-
erence [CLO07] mentioned in introduction. In addition, the module sage.rings.
polynomial.toy_buchberger from Sage offers a “pedagogical” implementation
of Buchberger’s algorithm and various related algorithms, which closely follows
their theoretical description.

Let us however keep in mind that computing a Gröbner basis is expensive
both in terms of time and memory, and even very expensive in some unlucky
cases. Besides, the groebner_basis method has several options10 which allow

8For a given k, this is true more generally for any order such that i ≤ k < j =⇒ xi > xj .
Such an order is called a “block order” (see also Table 9.5).

9We thus get a “triangular form” of the system formed by the ideal generators, however
in a weaker sense with respect to §9.2.5: we cannot say much a priori about the number of
polynomials in each block or their leading terms.

10For more details, see the help page of this method, as well as those of internal methods of
the ideal, whose name starts with _groebner_basis.
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Change of order

The most interesting Gröbner bases are not the easiest to compute: often,
the degrevlex order is the cheapest, but more useful information can be
read on a lexicographic Gröbner basis. Besides, we sometimes need Gröbner
bases of the same ideal for different monomial orders.

This motivates the introduction, in addition to general algorithms com-
puting Gröbner bases, of algorithms of “change of order”. These algorithms
compute a Gröbner basis for a given monomial order from a Gröbner basis
of the same ideal for a different order. They are often more efficient than
algorithms computing directly a basis for the target order. Thus, a strategy
which often wins to compute a lexicographic Gröbner basis is the following:
first compute a basis for the degrevlex order, then apply an algorithm of
change of order. Sage does it automatically in some cases.

The transformed_basismethod allows us to compute “by hand” Gröbner
bases by change of order, when the ideal is zero-dimensional, or when the
target order is lex. If needed, it first computes a Gröbner basis for the
monomial order attached to the polynomial ring.

the expert user to manually choose a Gröbner basis algorithm according to the
characteristics of the problem to solve.

Let us consider the ideals Cn(K) ⊂ K[x0, . . . , xn−1] defined by:

C2(K) = 〈x0 + x1, x0x1 − 1〉
C3(K) = 〈x0 + x1 + x2, x0x1 + x0x2 + x1x2, x0x1x2 − 1〉

...

Cn(K) =
〈 ∑
i∈Z/nZ

k∏
j=0

xi+j

〉n−2

k=0
+ 〈x0 · · ·xn−1 − 1〉,

(9.11)

and accessible in Sage by commands like:

sage: from sage.rings.ideal import Cyclic
sage: Cyclic(QQ['x,y,z'])
Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of
Multivariate Polynomial Ring in x, y, z over Rational Field

They are classical test problems to evaluate the efficiency of tools for solving
polynomial systems. On a computer where Sage computes the reduced Gröbner
basis of C6(Q) in less than a second:

sage: def C(R, n): return Cyclic(PolynomialRing(R, 'x', n))

sage: %time len(C(QQ, 6).groebner_basis())
CPU times: user 136 ms, sys: 0 ns, total: 136 ms
Wall time: 147 ms
45
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the computation of that of C7(Q) does not terminate after a dozen of hours, and
uses more than 3 Gb of memory.

Failing to compute the Gröbner basis over the rational numbers, let us try to
replace Q by a finite field Fp. The idea, classical in computer algebra, is to limit
the cost of operations on coefficients: those on elements of Fp take a constant
cost, whereas the number of digits of rational numbers tends to increase quite
rapidly during computations. We choose p small enough such that computations
in Fp can be done directly with machine integers. It must not however be too
small, so that the Gröbner basis on Fp can share a large part of the structure of
that on Q.

For example, with a convenient p, the Gröbner basis of C6(Fp) has the same
number of elements as that of C6(Q):

sage: p = previous_prime(2^30)
sage: len(C(GF(p), 6).groebner_basis())
45

By increasing the size of the system to solve, we see that the influence of the
coefficient field on the computing time is far from negligible: the cases n = 7 and
n = 8 become easy to solve.

sage: %time len(C(GF(p), 7).groebner_basis())
CPU times: user 1.44 s, sys: 4 ms, total: 1.44 s
Wall time: 1.46 s
209
sage: %time len(C(GF(p), 8).groebner_basis())
CPU times: user 40.7 s, sys: 24 ms, total: 40.7 s
Wall time: 40.9 s
372

These examples illustrate also another important phenomenon: the output of a
Gröbner basis computation might be much larger than the input. For example,
the last computation above shows that any Gröbner basis, reduced or not, of
C8(Fp) (with this value of p) for the degrevlex order counts at least 372 elements,
whereas C8 is generated by only 8 polynomials.
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In order to solve this differential equation you look at it
till a solution occurs to you.

George Pólya (1887 - 1985)

10
Differential Equations and Recurrences

10.1 Differential Equations

10.1.1 Introduction
If George Pólya’s method does not seem very effective, one can appeal to Sage
even if the domain of formal resolution of differential equations remains a weakness
of many symbolic computation systems. Sage is evolving however by expanding
its spectrum of resolution.

One can, if desired, invoke Sage in order to obtain a qualitative study: indeed,
its numerical and graphical tools will guide the intuition. This is the subject of
Section 14.2 from the chapter on numerical integration. Tools for the graphical
study of the solutions are given in Section 4.1.6. Solving methods using series
can be found in Section 7.5.2.

One may prefer to solve differential equations exactly. Sage can sometimes
help by directly giving a formal answer as we will see in this chapter.

In most cases, it will be necessary to go through a tricky manipulation of these
equations to help Sage. It should be kept in mind that the expected solution
of a differential equation is a function differentiable over a certain interval, but
that Sage manipulates expressions without a definition domain. The machine will
therefore require human intervention to move towards a rigorous solution.

We shall first study generalities on ordinary differential equations of order 1 and
some special cases such as linear equations, separable equations, homogeneous
equations, a parameter dependent equation (§10.1.2); then more briefly the
equations of order 2 and an example of a partial differential equation (§10.1.3).
We will end with the use of the Laplace transform (§10.1.4) and finally the
resolution of some differential systems (§10.1.5).
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An ordinary differential equation (ODE) is an equation involving an (unknown)
function of a single variable, as well as one or more derivatives, successive or not,
of the function.

In the equation y′(x) + x · y(x) = sin(x) the unknown function y is called the
dependent variable and the variable x (relative to which y varies) is called the
independent variable.

A partial differential equation (referred to as PDE) involves several independent
variables as well as the partial derivatives of the dependent variable with respect
to these independent variables.

Unless otherwise stated, we shall consider in this chapter functions of a real
variable.

10.1.2 First-Order Ordinary Differential Equations
Basic Commands. We would like to solve a first-order ODE:

F (x, y(x), y′(x)) = 0.

We start by defining a variable x and a function y depending on this variable:

sage: x = var('x')
sage: y = function('y')(x)

Then:
sage: desolve(equation, variable, ics = ..., ivar = ...,
....: show_method = ..., contrib_ode = ...)

where:

• equation is the differential equation. Equality is designated by ==, for
instance, the equation y′ = 2y + x is written diff(y,x) == 2*y+x;

• variable is the dependent variable, i.e., y in y′ = 2y + x;

• ics is optional and stands for initial conditions. For a first-order equation,
write [x0,y0] and for a second-order equation write [x0,y0,x1,y1] or [x0,y0,y′0];

• ivar is optional and stands for the independent variable, i.e., x in y′ = 2y+x.
It must be specified if there is more than one independent variable or
parameters as in y′ = ay + bx+ c;

• show_method is an optional boolean set to false. If true, then Sage returns
a pair "[solution, method]", where method is the string describing the
method which has been used to get a solution. The method can be one
of the following: linear, separable, exact, homogeneous, bernoulli,
generalized homogeneous.

• contrib_ode is an optional boolean set to false. If true, desolve allows to
solve Clairaut, Lagrange, Riccati and some other equations. This may take
a long time and is thus turned off by default.
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First-Order Equations Directly Solved by Sage. We will study in this
section how to solve with Sage linear, separable, Bernoulli, Riccati, Lagrange,
Clairaut, homogeneous and exact equations.

Linear equations. These are equations of the form

y′ + P (x)y = Q(x),

where P and Q are continuous functions on given intervals.
Example: y′ + 3y = ex.

sage: x = var('x'); y = function('y')(x)

sage: desolve(diff(y,x) + 3*y == exp(x), y, show_method=True)
[1/4*(4*_C + e^(4*x))*e^(-3*x), 'linear']

Separable equations. These are equations of the form

P (x) = y′Q(y),

where P and Q are continuous functions on given intervals.
Example: yy′ = x.

sage: desolve(y*diff(y,x) == x, y, show_method=True)
[1/2*y(x)^2 == 1/2*x^2 + _C, 'separable']

Caution! Sometimes Sage solves separable equations as exact. Example: y′ =
ex+y.

sage: desolve(diff(y,x) == exp(x+y), y, show_method=True)
[-(e^(x + y(x)) + 1)*e^(-y(x)) == _C, 'exact']

Bernoulli equations. These are equations of the form

y′ + P (x)y = Q(x)yα,

where P and Q are continuous functions on given intervals and α 6∈
{

0, 1
}
.

Example: y′ − y = xy4.
sage: desolve(diff(y,x)-y == x*y^4, y, show_method=True)
[e^x/(-1/3*(3*x - 1)*e^(3*x) + _C)^(1/3), 'bernoulli']

Homogeneous equations. These are equations of the form

y′ = P (x, y)
Q(x, y) ,

where P and Q are homogeneous functions of same degree on given intervals.
Example: x2y′ = y2 + xy + x2.

sage: desolve(x^2*diff(y,x) == y^2+x*y+x^2, y, show_method=True)
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[_C*x == e^(arctan(y(x)/x)), 'homogeneous']

Solutions are not given explicitly. We will see further on how to deal with these
equations in some situations.

Exact equations. These are equations of the form

∂f

∂x
dx+ ∂f

∂y
dy,

where f is a differentiable function of two variables.
Example: y′ = cos(y)−2x

y+x sin(y) with f = x2 − x cos y + y2/2.

sage: desolve(diff(y,x) == (cos(y)-2*x)/(y+x*sin(y)), y,
....: show_method=True)
[x^2 - x*cos(y(x)) + 1/2*y(x)^2 == _C, 'exact']

Once again, solutions are not given explicitly.

Riccati equations. These are equations of the form

y′ = P (x)y2 +Q(x)y +R(x),

where P , Q and R are continuous functions on given intervals.
Example: y′ = xy2 + 1

xy −
1
x2 .

In this case, we set contrib_ode to True to make Sage use more complex methods.
sage: desolve(diff(y,x) == x*y^2+y/x-1/x^2, y,
....: contrib_ode=True, show_method=True)[1]
'riccati'

Lagrange and Clairaut equations. When the equation is of the form
y = xP (y′) +Q(y′) where P and Q are C1 on a given interval, it is a Lagrange
equation. When P is the identity function, it is a Clairaut equation. Example:
y = xy′ − y′2.

sage: desolve(y == x*diff(y,x)-diff(y,x)^2, y,
....: contrib_ode=True, show_method=True)
[[y(x) == -_C^2 + _C*x, y(x) == 1/4*x^2], 'clairault']

Linear Equations. Let us solve y′ + 2y = x2 − 2x+ 3:
sage: x = var('x'); y = function('y')(x)

sage: DE = diff(y,x)+2*y == x**2-2*x+3
sage: desolve(DE, y)
1/4*((2*x^2 - 2*x + 1)*e^(2*x) - 2*(2*x - 1)*e^(2*x) + 4*_C
+ 6*e^(2*x))*e^(-2*x)

We can rearrange the output with expand:
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sage: desolve(DE, y).expand()
1/2*x^2 + _C*e^(-2*x) - 3/2*x + 9/4

It is thus convenient to use the form desolve(...).expand(). Let us check
which method has been used:

sage: desolve(DE, y, show_method=True)[1]
'linear'

Let us add an initial condition, for instance y(0) = 1:

sage: desolve(DE, y, ics=[0,1]).expand()
1/2*x^2 - 3/2*x - 5/4*e^(-2*x) + 9/4

Separable Equations. Let us solve y′ log(y) = y sin(x):

sage: x = var('x'); y = function('y')(x)
sage: desolve(diff(y,x)*log(y) == y*sin(x), y, show_method=True)
[1/2*log(y(x))^2 == _C - cos(x), 'separable']

Sage agrees with us: it is a separable equation.
We should assign the solutions in order to use them later on:

sage: ed = desolve(diff(y,x)*log(y) == y*sin(x), y); ed
1/2*log(y(x))^2 == _C - cos(x)

Here, y(x) is not explicitly given: 1
2 log2(y(x)

)
= _C − cos(x).

We can get y(x) explicitly using solve. Be aware that ed is an equation where
y is a variable:

sage: solve(ed, y)
[y(x) == e^(-sqrt(2*_C - 2*cos(x))), y(x) == e^(sqrt(2*_C - 2*cos(x)))]

We should take care that sqrt(2*_C - 2*cos(x)) may cause some problems
even if Sage does not warn us. We will then assume that _C > 1.

To draw the graph of solutions, we need their right-hand side. For instance,
in order to get the first solution’s right-hand side with _C = 5, we could type:

sage: solve(ed, y)[0].substitute(_C==5).rhs()
Traceback (most recent call last):
...
NameError: name '_C' is not defined

_C has not been defined but only introduced by Sage. We can get it through the
variables() command which gives the variables list:

sage: ed.variables()
(_C, x)

Only _C and x are variables, y having been defined as function of the variable x.

sage: c = ed.variables()[0]
sage: solve(ed, y)[0].substitute(c == 5).rhs()
e^(-sqrt(-2*cos(x) + 10))
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Figure 10.1 – Some solutions of y′ log(y) = y sin(x).

Another example with _C = 2:

sage: plot(solve(ed, y)[0].substitute(c == 2).rhs(), x, -3, 3)

which gives:
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To get several curves, (see Figure 10.1), we use a loop:

sage: P = Graphics()
sage: for k in range(1,20,2):
....: P += plot(solve(ed, y)[0].substitute(c==1+k/4).rhs(), x, -3, 3)

We could have used a double loop in order to get the two solutions:

sage: P = Graphics()
sage: for j in [0,1]:
....: for k in range(1,10,2):
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....: f = solve(ed,y)[j].substitute(c==2+0.25*k).rhs()

....: P += plot(f, x, -3, 3)
sage: P

but the scales are too different to see both sets of curves:
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Exercise 39 (Separable equations). Find the solutions in R of these separable
equations:

1. (E1) : yy′√
1+y2

= sin(x); 2. (E2) : y′ = sin(x)
cos(y) .

Homogeneous Equations. We want to solve the differential equation xy′ =
y +

√
y2 + x2 which is homogeneous since

dy
dx = y +

√
y2 + x2

x
= N(y, x)
M(y, x) ,

with N(ky, kx) = kN(y, x) and M(ky, kx) = kM(y, x).
We just need to introduce the change of variables y(x) = x · u(x) for all real x

in order to get a separable equation.

sage: u = function('u')(x)
sage: y = x*u
sage: DE = x*diff(y,x) == y + sqrt(x**2 + y**2)

Let us change variables in the initial differential equation. The equation being
undefined at 0, we solve it first on ]0,+∞[ and then on ]−∞, 0[.

sage: assume(x>0)
sage: desolve(DE, u)
x == _C*e^arcsinh(u(x))

We do not get u explicitly. We therefore use Maxima’s ev command (as in
evaluate) with logarc=True in order to use the inverse hyperbolic functions as
logarithms; u will then be expressed thanks to the solve command:
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sage: S = desolve(DE,u)._maxima_().ev(logarc=True).sage().solve(u); S
[u(x) == -(sqrt(u(x)^2 + 1)*_C - x)/_C]

Here, S is a list containing a single equation; S[0] is therefore the equation itself.
Here we can observe that the equation is still implicitly solved, thus we will

ask Sage to solve the equivalent equation:

c2(u2 + 1) = (x− uc)2,

via

sage: solu = (x-S[0]*c)^2; solu
(_C*u(x) - x)^2 == (u(x)^2 + 1)*_C^2
sage: sol = solu.solve(u); sol
[u(x) == -1/2*(_C^2 - x^2)/(_C*x)]

We then just need to go back to y:

sage: y(x) = x*sol[0].rhs(); y(x)
-1/2*(_C^2 - x^2)/_C

And here are the explicit solutions!

y(x) = x2 − c2

2c .

We then draw the solutions on ]0,+∞[, keeping in mind that _C must be a
non-zero constant.

sage: c = y(x).variables()[0]
sage: P = Graphics()
sage: for k in range(-19,19,2):
....: P += plot(y(x).substitute(c == 1/k), x, 0, 3)
sage: P
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Exercise 40 (Homogeneous differential equations). Solve the following homogeneous
equation over R: (E5) : xyy′ = x2 + y2.
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A Parametric Equation: the Verhulst Equation. The relative rate of
growth of a population is a linearly decreasing function of the population. In
order to study this, one can attempt to solve an equation of the form:

y′ = ay − by2,

with a and b being positive real parameters.
sage: x = var('x'); y = function('y')(x); a, b = var('a, b')
sage: DE = diff(y,x) - a*y == -b*y**2
sage: sol = desolve(DE,[y,x]); sol
-(log(b*y(x) - a) - log(y(x)))/a == _C + x

As usual, we do not get y explicitly. Let us try to isolate it with solve:
sage: Sol = solve(sol, y)[0]; Sol
log(y(x)) == _C*a + a*x + log(b*y(x) - a)

We still do not have an explicit solution. We group together the terms on the
left-hand side and simplify this expression using simplify_log():

sage: Sol(x) = Sol.lhs()-Sol.rhs(); Sol(x)
-_C*a - a*x - log(b*y(x) - a) + log(y(x))
sage: Sol = Sol.simplify_log(); Sol(x)
-_C*a - a*x + log(y(x)/(b*y(x) - a))
sage: solve(Sol, y)[0].simplify()
y(x) == a*e^(_C*a + a*x)/(b*e^(_C*a + a*x) - 1)

10.1.3 Second-Order Equations
Linear Ordinary Differential Equations with Constant Coefficients. Let
us solve now a second-order linear ordinary differential equation with constant
coefficients, for instance:

y′′ + 3y = x2 − 7x+ 31.

Here we use the same syntax as for the first-order equations, the second
derivative of y with respect to x is obtained with diff(y, x, 2).

sage: x = var('x'); y = function('y')(x)
sage: DE = diff(y,x,2)+3*y == x^2-7*x+31
sage: desolve(DE, y).expand()
1/3*x^2 + _K2*cos(sqrt(3)*x) + _K1*sin(sqrt(3)*x) - 7/3*x + 91/9

Let us add initial conditions, for instance y(0) = 1 and y′(0) = 2:
sage: desolve(DE, y, ics=[0,1,2]).expand()
1/3*x^2 + 13/9*sqrt(3)*sin(sqrt(3)*x) - 7/3*x - 82/9*cos(sqrt(3)*x) +

91/9

or y(0) = 1 and y(−1) = 0:
sage: desolve(DE, y, ics=[0,1,-1,0]).expand()
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1/3*x^2 - 7/3*x - 82/9*cos(sqrt(3))*sin(sqrt(3)*x)/sin(sqrt(3))
+ 115/9*sin(sqrt(3)*x)/sin(sqrt(3)) - 82/9*cos(sqrt(3)*x) + 91/9

that is

1
3 x

2 − 7
3 x−

82 sin(
√

3x) cos(
√

3)
9 sin(

√
3)

+ 115 sin(
√

3x)
9 sin(

√
3)

− 82
9 cos(

√
3x) + 91

9 .

How to Solve a PDE: the Heat Equation. Next we will study the famous
heat equation. The temperature z is distributed in a homogeneous rectilinear rod
of length ` according to the equation (where x is the abscissa along the rod, and
t the time):

∂2z

∂x2 (x, t) = C
∂z

∂t
(x, t).

This equation will be studied against the following initial conditions:

∀t ∈ R+, z(0, t) = 0 z(`, t) = 0 ∀x ∈ ]0; `[, z(x, 0) = 1.

We will seek non-zero solutions of the form:

z(x, t) = f(x)g(t).

This is the method of separation of variables.
sage: x, t = var('x, t'); f = function('f')(x); g = function('g')(t)
sage: z = f*g
sage: eq(x,t) = diff(z,x,2) == diff(z,t); eq(x,t)
g(t)*diff(f(x), x, x) == f(x)*diff(g(t), t)

The equation thus becomes:

g(t)d2f(x)
dx2 = f(x)dg(t)

dt .

Let us divide by f(x)g(t), assumed not to be zero:
sage: eqn = eq/z; eqn(x,t)
diff(f(x), x, x)/f(x) == diff(g(t), t)/g(t)

We then obtain an equation where each side depends only on one variable:

1
f(x)

d2f(x)
dx2 = 1

g(t)
dg(t)

dt .

Each side can therefore only be constant. Let us separate equations and
introduce a constant k:

sage: k = var('k')
sage: eq1(x,t) = eqn(x,t).lhs() == k; eq2(x,t) = eqn(x,t).rhs() == k

We solve the equations separately, beginning with the second one:
sage: g(t) = desolve(eq2(x,t),[g,t]); g(t)
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_C*e^(k*t)

therefore g(t) = cekt with c a constant. For the first one, we cannot do it directly:

sage: desolve(eq1,[f,x])
Traceback (most recent call last):
...

TypeError: ECL says: Maxima asks:
Is k positive, negative, or zero?

Let us use the assume mechanism:

sage: assume(k>0); desolve(eq1,[f,x])
_K1*e^(sqrt(k)*x) + _K2*e^(-sqrt(k)*x)

that is f(x) = k1ex
√
k + k2e−x

√
k.

10.1.4 The Laplace Transform
The Laplace transform converts a differential equation with initial conditions into
an algebraic equation and the inverse transform then makes it possible to get
back to the solution of the differential equation.

If f is a function defined on R and is identically zero on ]−∞, 0[, we call
Laplace transform of f the function F defined, under certain conditions, by:

L
(
f(x)

)
= F (s) =

∫ +∞

0
e−sxf(x) dx.

Laplace transforms are easily obtained from polynomial, trigonometric, expo-
nential functions, and so on. These transforms have very interesting properties,
especially concerning the transform of a derivative: if f ′ is a piecewise continuous
function on R+ then

L
(
f ′(x)

)
= sL

(
f(x)

)
− f(0),

and if f ′ satisfies the conditions imposed on f :

L
(
f ′′(x)

)
= s2L

(
f(x)

)
− sf(0)− f ′(0).

Example. We want to solve the differential equation y′′ − 3y′ − 4y = sin(x)
using the Laplace transform with the initial conditions: y(0) = 1 and y′(0) = −1.
Thus:

L (y′′ − 3y′ − 4y) = L (sin(x)) ,

that is:
(s2 − 3s− 4)L(y)− sy(0)− y′(0) + 3y(0) = L(sin(x)).

In case we forgot the Laplace transforms of the most common functions, we
can use Sage:

sage: x, s = var('x, s'); f = function('f')(x)
sage: f(x) = sin(x); f.laplace(x,s)
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x |--> 1/(s^2 + 1)

Thus we get an expression of the Laplace transform of y:

L(y) = 1
(s2 − 3s− 4)(s2 + 1) + s− 4

s2 − 3s− 4 .

Let us use Sage to get the inverse transform:
sage: X(s) = 1/(s^2-3*s-4)/(s^2+1) + (s-4)/(s^2-3*s-4)
sage: X(s).inverse_laplace(s, x)
3/34*cos(x) + 1/85*e^(4*x) + 9/10*e^(-x) - 5/34*sin(x)

If one wants to “cheat”, one can decompose X(s) into partial fractions first:

sage: X(s).partial_fraction()
1/34*(3*s - 5)/(s^2 + 1) + 9/10/(s + 1) + 1/85/(s - 4)

And all that remains is to read an inversion table. We can however use the black
box desolve_laplace which will give the solution directly:

sage: x = var('x'); y = function('y')(x)
sage: eq = diff(y,x,x) - 3*diff(y,x) - 4*y - sin(x) == 0
sage: desolve_laplace(eq, y)
1/85*(17*y(0) + 17*D[0](y)(0) + 1)*e^(4*x) + 1/10*(8*y(0)
- 2*D[0](y)(0) - 1)*e^(-x) + 3/34*cos(x) - 5/34*sin(x)
sage: desolve_laplace(eq, y, ics=[0,1,-1])
3/34*cos(x) + 1/85*e^(4*x) + 9/10*e^(-x) - 5/34*sin(x)

10.1.5 Systems of Linear Differential Equations
A Simple Example of System of First-Order Linear Differential Equa-
tions. We want to solve the following system of linear differential equations{

y′(x) = A · y(x)
y(0) = c

knowing that

A =

 2 −2 0
−2 0 2
0 2 2

 , y(x) =

y1(x)
y2(x)
y3(x)

 , c =

 2
1
−2

 .
We write:

sage: x = var('x'); y1 = function('y1')(x)
sage: y2 = function('y2')(x); y3 = function('y3')(x)
sage: y = vector([y1, y2, y3])
sage: A = matrix([[2,-2,0],[-2,0,2],[0,2,2]])
sage: system = [diff(y[i], x) - (A * y)[i] for i in range(3)]
sage: desolve_system(system, [y1, y2, y3], ics=[0,2,1,-2])
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[y1(x) == e^(4*x) + e^(-2*x),
y2(x) == -e^(4*x) + 2*e^(-2*x),
y3(x) == -e^(4*x) - e^(-2*x)]

Here the syntax for the initial conditions is: ics = [x0,y1(x0),y2(x0),y3(x0)].

A Matrix with Complex Eigenvalues. Let us consider now

A =
[
3 −4
1 3

]
, c =

[
2
0

]
.

With Sage:

sage: x = var('x'); y1 = function('y1')(x); y2 = function('y2')(x)
sage: y = vector([y1,y2])
sage: A = matrix([[3,-4],[1,3]])
sage: system = [diff(y[i], x) - (A * y)[i] for i in range(2)]
sage: desolve_system(system, [y1, y2], ics=[0,2,0])
[y1(x) == 2*cos(2*x)*e^(3*x), y2(x) == e^(3*x)*sin(2*x)]

that is: {
y1(x) = 2 cos(2x)e3x

y2(x) = sin(2x)e3x.

A Second-Order System. We want to solve the following system{
y′′1 (x)− 2y1(x) + 6y2(x)− y′1(x)− 3y′2(x) = 0
y′′2 (x) + 2y1(x)− 6y2(x)− y′1(x) + y′2(x) = 0.

We reduce to a first-order system by setting

u = (u1, u2, u3, u4) = (y1, y2, y
′
1, y
′
2).

Thus we get: 
u′1 = u3

u′2 = u4

u′3 = 2u1 − 6u2 + u3 + 3u4

u′4 = −2u1 + 6u2 + u3 − u4,

That is u′(x) = A · u(x) with

A =


0 0 1 0
0 0 0 1
2 −6 1 3
−2 6 1 −1

 .
With Sage:
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sage: x = var('x'); u1 = function('u1')(x); u2 = function('u2')(x)
sage: u3 = function('u3')(x); u4 = function('u4')(x)
sage: u = vector([u1,u2,u3,u4])
sage: A = matrix([[0,0,1,0],[0,0,0,1],[2,-6,1,3],[-2,6,1,-1]])
sage: system = [diff(u[i], x) - (A*u)[i] for i in range(4)]
sage: sol = desolve_system(system, [u1, u2, u3, u4])

We will only consider the first two coordinates because we need y1 and y2,
that is u1 and u2:

sage: sol[0]
u1(x) == 1/12*(2*u1(0) - 6*u2(0) + 5*u3(0) + 3*u4(0))*e^(2*x)
+ 1/24*(2*u1(0) - 6*u2(0) - u3(0) + 3*u4(0))*e^(-4*x) + 3/4*u1(0)
+ 3/4*u2(0) - 3/8*u3(0) - 3/8*u4(0)
sage: sol[1]
u2(x) == -1/12*(2*u1(0) - 6*u2(0) - u3(0) - 3*u4(0))*e^(2*x)
- 1/24*(2*u1(0) - 6*u2(0) - u3(0) + 3*u4(0))*e^(-4*x) + 1/4*u1(0)
+ 1/4*u2(0) - 1/8*u3(0) - 1/8*u4(0)

which can be summarised more concisely as:{
y1(x) = k1e2x + k2e−4x + 3k3

y2(x) = k4e2x − k2e−4x + k3

with k1, k2, k3 and k4 parameters depending on the initial conditions.

10.2 Recurrence Relations
10.2.1 Recurrences un+1 = f(un)
Definition. Let un+1 = f(un) be a recurrence relation, with u0 = a. We can
define the relation naturally by means of a recursive algorithm. Let us consider
for instance the logistic map (defined by xn+1 = rxn(1− xn)):

f : x 7→ 3.83 · x
(

1− x

100 000

)
and u0 = 20 000.

With Sage:
sage: x = var('x'); f = function('f')(x)
sage: f(x) = 3.83*x*(1 - x/100000)
sage: def u(n):
....: if n==0: return(20000)
....: else: return f(u(n-1))

An iterative definition may be preferred:
sage: def v(n):
....: V = 20000;
....: for k in [1..n]:
....: V = f(V)
....: return V
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Differential equations

Variable declaration x=var('x')
Function declaration y=function('y')(x)
Solving an equation desolve(equation, y, <options>)

Solving a system desolve_system([eq1, ...], [y1, ...],
<options>)

First-order initial conditions [x0, y(x0)]
Second-order initial conditions [x0, y(x0), x1, y(x1)]

[x0, y(x0), y′(x0)]
System initial conditions [x0, y1(x0), y2(x0), ...]

Independent variable ivar=x
Resolution method show_method=True

Call for special methods contrib_ode=True

Laplace transform

Laplace transform of f : x 7→ f(x) f.laplace(x,s)
Inverse transform of X(s) X(s).inverse_laplace(s,x)

Solving an ODE with the Laplace transform desolve_laplace(equation,function)

Miscellaneous commands

First-order derivative diff(y,x)
Expanding an expression expr.expand()

Getting the variables expr.variables()
Variable substitution expr.substitute(var==val)

Table 10.1 – Useful commands for solving differential equations.

Graphical Representation. Let us plot the coordinates of (k, uk):

sage: def cloud(u,n):
....: L = [[0,u(0)]];
....: for k in [1..n]:
....: L += [[k,u(k)]]
....: points(L).show()

From the following graph, we can assume the existence of three limit points:

sage: cloud(u,50)
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The representation involving the first bisector and the representative curve
of f could have been preferred. Since this does not exist natively in Sage, we will
build a small procedure that will do the job:

sage: def snail(f,x,u0,n,xmin,xmax):
....: u = u0
....: P = plot(x, x, xmin, xmax, color='gray')
....: for i in range(n):
....: P += line([[u,u],[u,f(u)],[f(u),f(u)]], color = 'red')
....: u = f(u)
....: P += f.plot(x, xmin, xmax, color='blue')
....: P.show()

For instance, with the same relation:

sage: f(x) = 3.83*x*(1 - x/100000)
sage: snail(f,x,20000,100,0,100000)

The three limit points are highlighted:

2e4 4e4 6e4 8e4 1e5

2e4

4e4

6e4

8e4

1e5
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10.2.2 Linear Recurrences with Rational Coefficients
Sage deals with relations of the following kind:

akun+k + ak−1un+k−1 + · · ·+ a1un+1 + a0un = 0,

the (ai)06i6k being an indexed family of rational scalars.
For instance, consider the following relation:

u0 = −1, u1 = 1, un+2 = 3
2un+1 −

1
2un.

The well known function rsolve is not directly accessible. It must be picked
up in SymPy, which causes some inconvenience such as syntax changes to declare
variables. Here, for example, a preamble is necessary:

sage: from sympy import Function
sage: from sympy.abc import n
sage: u = Function('u')

The recurrence relation must then be defined as: akun+k + · · ·+ a0un = 0. Here
un+2 − 3

2un+1 + 1
2un = 0:

sage: f = u(n+2)-(3/2)*u(n+1)+(1/2)*u(n)

Finally, we use rsolve, observing how the initial conditions are declared
(u(0):value, u(1):value, etc.):

sage: from sympy import rsolve
sage: rsolve(f, u(n), {u(0):-1,u(1):1})
3 - 4*2**(-n)

that is un = 3− 1
2n−2 .

10.2.3 Non-Homogeneous Linear Recurrence Relations
Sage also deals with relations of the following kind:

ak(n)un+k + ak−1(n)un+k−1 + · · ·+ a1(n)un+1 + a0(n)un = f(n),

the (ai)06i6k being an indexed family of polynomial, rational or hypergeometric
functions of n.

The command will depend on the nature of f(n):

• rsolve_poly if f is polynomial;

• rsolve_ratio if f is rational;

• rsolve_hyper if f is hypergeometric.

The coefficients ai(n) are given as a list [a0(n), . . . , ak−1(n), ak(n)]. For example,
in order to study the complexity of merge sort, one has to study the following
relation:

un+1 = 2un + 2n+2, u0 = 0.
The computation yields:
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sage: from sympy import rsolve_hyper
sage: from sympy.abc import n
sage: rsolve_hyper([-2,1],2**(n+2),n)
2**n*C0 + 2**(n + 2)*(C0 + n/2)

and since u0 = 0 gives C0=0, we obtain un = n · 2n+1.
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11
Floating-Point Numbers

In the next chapters, floating-point numbers are at the heart of all computations.
It is necessary to study them, as their behaviour follows precise rules.

How can we represent real numbers in a computer? In general, these numbers
cannot be coded with a finite amount of information, and thus they cannot be
exactly represented. It is necessary to approximate them using a finite amount of
memory.

A standard has appeared around an approximation of real numbers with a
finite quantity of information: the floating-point representation.

In this chapter, one will find: a basic description of the floating-point numbers
and of the different kinds of these numbers available in Sage, and a demonstration
of some of their properties. Examples will show some difficulties we encounter
when computing with floating-point numbers and some tricks to get around them.
We hope that the reader will develop a necessary careful approach. To conclude,
we will try to describe some properties which must be fulfilled by numerical
methods when they use these numbers.

To go further, the reader should refer to [BZ10] and [Gol91] (available on the
internet) or to the book [MBdD+10].

11.1 Introduction
11.1.1 Definition
A set F (β, r,m,M) of floating-point numbers is defined by four parameters: a
radix β ≥ 2, a number r of digits and two signed integers m and M . The elements
of F (β, r,m,M) are numbers of the form

x = (−1)s 0.d1d2 . . . dr · βj ,
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where the digits di are integers verifying 0 ≤ di < β for i > 1 and 0 < d1 < β.
The amount r of digits is the precision: the sign s is 0 or 1; the exponent j lies in
the range [m,M ], and 0.d1d2 . . . dr is the significand.

11.1.2 Properties and Examples

The normalisation 0 < d1 < β ensures that all floating-point numbers have the
same amount of significant digits. One remarks that, with the convention d1 > 0,
the “zero” value cannot be represented: zero has a special representation.

As example, the number denoted by −0.028 in radix 10 (fixed-point represen-
tation) will be represented by −0.28 · 10−1 (assuming r ≥ 2 and m ≤ −1 ≤M).
As the radix 2 is well adapted to the binary representation of the computers, we
will always have β = 2 in the different sets of floating-point numbers proposed by
Sage, and we will always use this setting in the remainder of this chapter. To
give an example, 0.101 · 21 represents the value 5/4 in the set F (2, 3,−1, 2).

As the only possible value for d1 when β = 2 is d1 = 1, d1 can be omitted
in the machine implementation; considering again the set F (2, 3,−1, 2), 5/4 can
be represented in the computer by the 5 bits: 00110, where the leftmost bit
represents the + sign, the 2 following bits (01) represent the significand (101),
and the last 2 ones at the right represent the exponent (00 encoding the value −1
of the exponent, 01 encoding 0, and so on).

It should be obvious for the reader that the sets F (β, r,m,M) only describe
a subset of the real numbers. To represent a real number x located between
two consecutive numbers in F (β, r,m,M), we need a function called rounding
which will define which number will approximate x: for this we can use the
nearest number from x, but other choices are available. The standard imposes
that F (β, r,m,M) is invariant by the rounding application. The set of numbers
which can be represented is bounded, and the floating-point numbers contain the
special values +∞, −∞ which represent the infinities (as 1/0) but also all values
greater than the largest positive number which can be represented (or less than
the smallest negative number available), and also a representation of indefinite
operations like 0/0.

11.1.3 Standardisation

After some years of trials and errors, the need for a standard did arise, so that
identical programs give the same results on different machines. Since 1985, the
IEEE-754 standard defines different sets of numbers; among them the 64-bit
“double-precision” numbers: the sign s is encoded on 1 bit, the significand on 53
bits (from which only 52 are stored), and the exponent on 11 bits. Numbers are
of the form

(−1)s 0.d1d2 . . . d53 · 2j−1023.

They correspond to the “double” type of the C programming language.
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11.2 The Floating-Point Numbers
Sage provides two sorts of floating-point numbers:

1. the “double-precision“ numbers as described in §11.1.3: these numbers are
provided by the computer’s processor; in Sage, they belong to the class
RDF:

sage: xrdf = RDF(3.0)

2. floating-point numbers with an arbitrary precision: every instance of the
class RealField — or Reals — defines a set of floating-point numbers with
a given precision (and possibly with a given rounding mode: see §11.3.2).
For example, to declare a number x100 with a precision on 100 binary digits,
one writes:

sage: R100 = RealField(100) # precision: 100 bits.
sage: x100 = R100(3/8); x100
0.37500000000000000000000000000

In the set RealField(p) numbers are of the form

(−1)s 0.d1d2 . . . dp · 2e,

with s ∈ {0, 1}; the significand has p binary digits and e might have 30 binary
digits (or more on some computers). An implicit precision is available:

sage: Rdefault = RealField() # default precision of 53 bits
sage: xdefault = Rdefault(2/3)

and it is possible to check the precision of all floating-point numbers using the
prec() method:

sage: xrdf.prec()
53
sage: x100.prec()
100
sage: xdefault.prec()
53

So, the numbers of the set RealField() and those of the set RDF have the same
precision, but RealField() allows much larger exponents. The set RealField(),
with a precision of 53 bits, is the default type of “real” numbers in Sage:

sage: x = 1.0; type(x)
<type 'sage.rings.real_mpfr.RealLiteral'>
sage: x.prec()
53

Here, real_mpfr.RealLiteral means that the set of numbers to which x belongs
is implemented by the GNU MPFR library. Let us recall that the type of a
variable is automatically defined by the right-hand side in an assignment:



238 CHAP. 11. FLOATING-POINT NUMBERS

sage: x = 1.0 # x belongs to RealField()
sage: x = 0.1e+1 # idem: x belongs to RealField()
sage: x = 1 # x is an integer
sage: x = RDF(1) # x is a machine double-precision number
sage: x = RDF(1.) # idem: x is a machine double-precision number
sage: x = RDF(0.1e+1) # idem
sage: x = 4/3 # x is a rational number
sage: R = RealField(20)
sage: x = R(1) # x is a 20-bit floating-point number

and natural conversions from rational numbers are carried out:

sage: RDF(8/3)
2.6666666666666665
sage: R100 = RealField(100); R100(8/3)
2.6666666666666666666666666667

like conversions between different sets of floating-point numbers:

sage: x = R100(8/3)
sage: R = RealField(); R(x)
2.66666666666667
sage: RDF(x)
2.6666666666666665

The different sets of floating-point numbers contain the special values +0, -0,
+infinity, -infinity, and1 NaN:

sage: 1.0/0.0
+infinity
sage: RDF(1)/RDF(0)
+infinity
sage: RDF(-1.0)/RDF(0.)
-infinity

The special value NaN stands for undefined results:

sage: 0.0/0.0
NaN
sage: RDF(0.0)/RDF(0.0)
NaN

11.2.1 Which Kind of Floating-Point Numbers to Choose?
The arbitrary precision floating-point numbers allow us to compute with a very
large precision, whereas the precision is fixed for RDF numbers. Computations
with the RealField(n) numbers use the GNU MPFR software library, while for
RDF numbers computations are carried out using the floating-point arithmetic of
the processor, which is much faster. In §13.2.10 we give a comparison where the

1These results follow the IEEE-754 standard.
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x R2(x).ulp() RDF(x).ulp() R100(x).ulp()

10−30 3.9e-31 1.75162308041e-46 1.2446030555722283414288128108e-60
10−10 2.9e-11 1.29246970711e-26 9.1835496157991211560057541970e-41
10−3 0.00049 2.16840434497e-19 1.5407439555097886824447823541e-33

1 0.50 2.22044604925e-16 1.5777218104420236108234571306e-30
103 510. 1.13686837722e-13 8.0779356694631608874161005085e-28
1010 4.3e9 1.90734863281e-06 1.3552527156068805425093160011e-20
1030 3.2e29 1.40737488355e+14 1.0000000000000000000000000000

Table 11.1 – Distance between floating-point numbers.

efficiency of the processor’s floating-point arithmetic is combined with libraries
optimised for these numbers. Note that, among the numerical methods we will
encounter in the next chapters, most of them only use RDF numbers and, whatever
we do, a conversion of floating-point numbers to this set will occur.

R2, a Toy Set of Floating-Point Numbers. Arbitrary precision floating-
point numbers, apart from being mandatory for large precision computations,
enable us to define a class of floating-point numbers which, as they have very
low accuracy, demonstrate in an extremal way the properties of floating-point
numbers; the set R2 of numbers with a precision of 2 bits:

sage: R2 = RealField(2)

11.3 Some Properties of Floating-Point
Numbers

11.3.1 These Sets are Full of Gaps
In every set of floating-point numbers, the ulp() method (unit in the last place)
returns the distance from a representable number to the next representable one
(in the opposite direction from zero):

sage: x2 = R2(1.); x2.ulp()
0.50
sage: xr = 1.; xr.ulp()
2.22044604925031e-16

The reader can easily check the value given by x2.ulp().
Table 11.1 gives the size of the interval which separates a given number x —

or more exactly R(x) where R is the considered set — from its nearest neighbour
(in the opposite direction from zero) for different sets of numbers (R100 is the set
RealField(100)), and different values of x.

As expected, the size of the gaps between two consecutive numbers grows with
the magnitude of the numbers.

Exercise 41 (a somewhat surprising value). Show that R100(1030).ulp() is exactly
1.0000000000000000000000000000.
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11.3.2 Rounding
How to approach a number which cannot be represented exactly in a set of
floating-point numbers? There exist different possibilities to define rounding:

• in the direction of the nearest representable number: this is what is done in
the set RDF, and it is the default behaviour of the sets created by RealField.
For a number exactly in the middle of two representable numbers, rounding
is done at the nearest even significand;

• in the direction of −∞; for this, use RealField(p,rnd=’RNDD’) to obtain
this behaviour with a precision of p bits;

• in the direction of zero: RealField(p,rnd=’RNDZ’);

• in the direction of +∞: RealField(p,rnd=’RNDU’).

11.3.3 Some Properties
Rounding, which is necessary for the sets of floating-point numbers, gives rise to
many unexpected effects. Let us explore some of them:

A Dangerous Phenomenon. Known as catastrophic cancellation it is the loss
of precision which results from the subtraction of two very close numbers; more
exactly, it is an amplification of the errors:

sage: a = 10000.0; b = 9999.5; c = 0.1; c
0.100000000000000
sage: a1 = a+c # add a small perturbation to a.
sage: a1-b
0.600000000000364

Here, the error c introduced on a makes the computation imprecise (the last 3
digits are false).

Application: Roots of a Quadratic Equation. Even computing the roots
of a second-order equation can cause problems. Let us consider the case a = 1,
b = 104, c = 1:

sage: a = 1.0; b = 10.0^4; c = 1.0
sage: delta = b^2-4*a*c
sage: x = (-b-sqrt(delta))/(2*a); y = (-b+sqrt(delta))/(2*a)
sage: x, y
(-9999.99990000000, -0.000100000001111766)

The sum of the roots is right, but not their product:

sage: x+y+b/a
0.000000000000000
sage: x*y-c/a
1.11766307320238e-9
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The error is due to the phenomenon known as catastrophic cancellation which
appears when we add -b and sqrt(delta) to compute y. Here, we can try to
find a better approximation for y:

sage: y = (c/a)/x; y
-0.000100000001000000
sage: x+y+b/a
0.000000000000000
sage: x*y-c/a
-1.11022302462516e-16

We can remark that, due to rounding, the sum of the roots remains correct, but
the product is much closer to c/a. The reader can consider all different choices for
a, b and c to be convinced that writing a numerically robust program to compute
the roots of a quadratic trinomial is far from easy.

The Set of Floating-Point Numbers is not an Additive Group. Actually,
addition is not associative. Let us use the set R2 (with 2 bits of precision):

sage: x1 = R2(1/2); x2 = R2(4); x3 = R2(-4)
sage: x1, x2, x3
(0.50, 4.0, -4.0)
sage: x1+(x2+x3)
0.50
sage: (x1+x2)+x3
0.00

We can deduce that different orders of computations in a program have some
importance on the result!

Recurrences and Sequences of Floating-Point Numbers. Let us
consider2 the recurrence un+1 = 4un − 1. If u0 = 1/3, the sequence is stationary:
ui = 1/3 for all i.

sage: x = RDF(1/3)
sage: for i in range(1,100): x = 4*x-1; print(x)
0.333333333333
0.333333333333
0.333333333333
...
-1.0
-5.0
-21.0
-85.0
-341.0
-1365.0
-5461.0

2Thanks to Marc Deléglise (Institut Camille Jordan, Lyon, France) for this example.
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-21845.0
...

The computed sequence is diverging! We can observe that this behaviour is
natural, as it is a classical instability phenomenon: every error on u0 is multiplied
by 4 at every iteration, and we know that floating-point arithmetic introduces
rounding errors, which will be amplified at every iteration.

Now, let us compute the recurrence un+1 = 3un − 1, with u0 = 1/2. We
expect the same problem: the sequence is constant if computed exactly, but every
error will be amplified at every iteration.

sage: x = RDF(1/2)
sage: for i in range(1,100): x = 3*x-1; print(x)
0.5
0.5
0.5
...
0.5

Now, the computed sequence remains constant! How can we explain these two
different behaviours? Let us look at the binary representation of u0 in both cases.

For the first case (un+1 = 4un − 1, u0 = 1/3), we have:

1
3 = 1

4

∞∑
i=0

1
4i = 1

4

∞∑
i=0

1
22i ,

and therefore 1/3 cannot be represented exactly in the set of floating-point
numbers we have at our disposal. The reader of this book is invited to repeat the
preceding computation in a large precision set like for example RealField(1000)
to verify that the computed sequence is always diverging. Let us remark that if,
in the first program, we replace the line

sage: x = RDF(1/3)

by
sage: x = 1/3

then the computations are carried out in the rational numbers and the iterates
will remain equal to 1/3. In the second case (un+1 = 3un − 1, u0 = 1/2), u0 and
3/2 in radix 2 are respectively 0.1 and 1.1; therefore they are exactly represented,
without rounding, in the different sets of floating-point numbers: computation is
exact, and the sequence remains constant.

The following exercise shows that a sequence encoded in a set of floating-point
numbers may converge to a wrong limit.

Exercise 42 (an example of Jean-Michel Muller). We consider the sequence (cf.
[MBdD+10, p. 9]):

un = 111− 1130
un−1

+ 3000
un−1un−2

.

It is possible to show that the general solution is of the form:

un = α 100n+1 + β 6n+1 + γ 5n+1

α 100n + β 6n + γ 5n .
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1. Choose u0 = 2 and u1 = −4: what are the values of α, β and γ? To which limit
is the sequence converging?

2. Write a program which computes the sequence (still with u0 = 2 and u1 = −4) in
the set RealField() (or in RDF). What can we observe?

3. Explain this behaviour.
4. Carry out the same computation with a large precision, in RealField(5000) for

example. Comment the result.
5. The recurrence is now defined in Q. Program it in the set of rational numbers

and comment the result.

The Summation of Numerical Series. We consider a numerical series with
a positive general term un. The computation of partial sums

∑m
i=0 ui in a set of

floating-point numbers is perturbed by rounding errors. The reader can enjoy
showing that, if un tends to 0 when n tends to infinity, and if the partial sums
remain in the interval of representable numbers, then after a certain rank m, the
sequence

∑m
i=0 ui computed with rounding is stationary. In short, in the world of

floating-point numbers, life is simple: series with positive general terms tending
to 0 converge, provided the partial sums do not grow too much!

For example, let us look at the harmonic (diverging) series, with general term
un = 1/n:

sage: def sumharmo(p):
....: RFP = RealField(p)
....: y = RFP(1.); x = RFP(0.); n = 1
....: while x <> y:
....: y = x; x += 1/n; n += 1
....: return p, n, x

Let us test this function with different values for the precision p:
sage: sumharmo(2)
(2, 5, 2.0)
sage: sumharmo(20)
(20, 131073, 12.631)

The reader can verify using a sheet of paper and a pencil that, in our toy set
R2 of floating-point numbers, the function converges in 5 iterations to the value
2.0. Obviously, the result depends on the precision p, and the reader can also
verify (always with a pencil...) that for n > βp, the computed sum is stationary.
However, be careful! With the default precision of 53 bits and doing 109 operations
per second, it might need 253/109/3600 hours, that is about 104 days, to reach
the stationary value!

Improving the Computation of some Recurrences. With some care, it is
possible to improve some results: here is a useful example.

It is common to encounter recurrences of the form:

yn+1 = yn + δn,
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where the numbers δn have a small absolute value when compared to yn: think
for instance of the integration of the celestial mechanics ordinary differential
equations to simulate the solar system: large values (of the distances, of the
velocities) undergo very small perturbations in the long time [HLW02]. Even if it
is possible to compute precisely the δn terms, rounding errors when doing the
additions yn+1 = yn + δn will introduce important errors.

As an example, consider the sequence defined by y0 = 1013, δ0 = 1 and
δn+1 = aδn with a = 1 − 10−8. The standard, naive, programming way to
compute yn is:

sage: def iter(y,delta,a,n):
....: for i in range(0,n):
....: y += delta
....: delta *= a
....: return y

As we have chosen rational values for y0, δ0 and a, we can compute the exact
value of the iterates with Sage:

sage: def exact(y,delta,a,n):
....: return y+delta*(1-a^n)/(1-a)

Now, let us compute again 100 000 iterates but with floating-point numbers in
RDF (for instance), and let us compare the result with the exact value:

sage: y0 = RDF(10^13); delta0 = RDF(1); a = RDF(1-10^(-8)); n = 100000
sage: ii = iter(y0,delta0,a,n)
sage: s = exact(10^13,1,1-10^(-8),n)
sage: print("exact - classical summation: %.1f" % (s-ii))
exact - classical summation: -45.5

Now, this is the compensated summation algorithm:

sage: def sumcomp(y,delta,e,n,a):
....: for i in range(0,n):
....: b = y
....: e += delta
....: y = b+e
....: e += (b-y)
....: delta = a*delta # new value of delta
....: return y

To understand the behaviour of this algorithm, let us look at the diagram below
(we follow here the presentations of [Hig93] and [HLW02]), where the boxes
represent the significand of the numbers. The position of the boxes represent the
exponent (the more a box is to the left, the larger its exponent is):
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b = yn b1 b2

e e1 0
δn δ1 δ2

e = e+ δn δ1 e1 + δ2

yn+1 = b+ e b1 b2 + δ1

e = e+ (b− yn+1) e1 + δ2 0
The rounding error accumulates in e, and none of the digits of δn is lost, while
with the naive method, the digits denoted δ2 disappear from the computation.

Let us compute again the first 100 000 iterates with the compensated summa-
tion method:

sage: c = sumcomp(y0,delta0,RDF(0.0),n,a)
sage: print("exact - compensated summation: %.5f" \

% RDF(s-RR(c).exact_rational()))
exact - compensated summation: -0.00042

The absolute error is −45.5 with the naive algorithm, and −0.00042 with the
compensated summation! It should also be noted that the relative errors are re-
spectively 4.55·10−12 with the naive method and 4.16·10−17 with the compensated
summation.

11.3.4 Complex Floating-Point Numbers
Sage offers two families of complex numbers represented in the computer by pairs
of floating-point numbers belonging to the sets we have encountered above:

1. double-precision complex numbers ComplexDoubleField (abbreviated CDF).
These are numbers of the form x + i · y where x and y are both “double-
precision” floating-point numbers. They are created like this:

sage: x = CDF(2,1.); x
2.0 + 1.0*I
sage: y = CDF(20,0); y
20.0

or:
sage: z = ComplexDoubleElement(2.,1.); z
2.0 + 1.0*I

2. arbitrary precision complex numbers ComplexField — or Complexes. These
are numbers of the form x+ i ·y, where x and y have the same precision of p
bits. An instance of the class ComplexField creates a set of given precision
(53 by default):

sage: C = ComplexField(); C(2,3)
2.00000000000000 + 3.00000000000000*I
sage: C100 = ComplexField(100); C100(2,3)
2.0000000000000000000000000000 + 3.0000000000000000000000000000*I
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Of course, computations with these sets face the same rounding problems as
with real floating-point numbers.

11.3.5 Methods
We have already seen the prec and ulp methods. The different sets of numbers we
have encountered provide a large amount of methods. Let us give some examples:

• methods which return constants. Examples:

sage: R200 = RealField(200); R200.pi()
3.1415926535897932384626433832795028841971693993751058209749
sage: R200.euler_constant()
0.57721566490153286060651209008240243104215933593992359880577

• trigonometric functions sin, cos, arcsin, arccos, and so on. Example:

sage: x = RDF.pi()/2; x.cos() # floating-point approximation of zero!
6.123233995736757e-17
sage: x.cos().arccos() - x
0.0

• the logarithms (log, log10, log2, etc.), the hyperbolic functions and their
inverses (sinh, arcsinh, cosh, arccosh, etc.).

• special functions (gamma, j0, j1, jn(k), and so on).

The reader should look at the Sage documentation to get a complete list of the
very large number of available methods. We recall that this list can be obtained
in the following way:

sage: x = 1.0; x.<tab>

For each method, we can get the parameters — if any — and an example of use
by typing (here, for the Euler Γ(x) function):

sage: x.gamma?

11.4 Interval and Ball Arithmetic
From what we explained above in this chapter, it should be clear that floating-
point numbers only allow us to compute approximations of numerical results, and
cannot provide proofs. But it turns out that we can compute rigorous enclosures
of the sought quantities. For example, we generally cannot prove, computing with
floating-point numbers, that a real number x0 is the solution of some equation
f(x) = 0 but we can prove that a solution exists in an interval I = [x, x] or prove
that no solution exists in I.

The tools for this are interval arithmetic and ball arithmetic.
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• Given a set F of floating-point numbers, real interval (or inf-sup) arithmetic
computes with intervals a = [a, a] = {x ∈ R : a ≤ x ≤ a} (with a and
a ∈ F). In the following we use bold letters to define an interval, and
use the convention that any number x ∈ F is represented by the singleton
x = [x, x].

• Real ball arithmetic (or mid-rad interval arithmetic): here we consider
numbers x ∈ F and an error bound attached to x; balls are sets of the form
{y ∈ R : x− ε ≤ y ≤ x+ ε}. We will also use bold letters to denote them.

As we will see later these families of sets can be extended to the complex plane.
We just give here a very minimal introduction to this important field; the

interested reader should consult [Tuc11] for example (from which we adopt the
notations).

Given real valued intervals (or real balls) a and b, the four operations are
defined in real valued intervals (or real balls) by:

a ∗ b = [a ∗ b for a ∈ a and b ∈ b],
where ∗ stands for one of +, −, ×, ÷.

Observe that a÷b is not yet defined if 0 ∈ b. To get around this, it is necessary
to extend F with the infinite values ±∞, and to consider infinite intervals in one
or both directions. The following table of examples shows the results for all cases
where 0 ∈ b, when computing with a class of real intervals:

a b Remarks a ÷ b
[−1,+1] [−2,+3] 0 ∈ a [-infinity .. +infinity]
[−2,−1] [−1, 0] a < 0 [1.0000000000000000 .. +infinity]
[−2,−1] [0,+2] a < 0 [-infinity .. -0.50000000000000000]
[+2,+3] [−3, 0] 0 < a [-infinity .. -0.66666666666666662]
[+2,+3] [0,+4] a > 0 [0.50000000000000000 .. +infinity]
[−2,−1] [0] 0 /∈ a [-infinity .. +infinity]

[0] [0] [.. NaN ..]

In the following, we always assume that F contains +∞ and −∞. Note that
the rounding mode must be chosen so as to guarantee the results: thus, when
doing arithmetic operations on intervals, one must always round outwards the
resulting interval.

11.4.1 Implementation in Sage
Recall that we have arbitrary precision real numbers in Sage (and that different
rounding modes are available); then:

• RealIntervalField(n) is the set of real intervals with a precision of n
bits. It is implemented using pairs of numbers from RealField(n). In the
default case (53 bits of precision) RealIntervalField() can be abbreviated
by RIF. We can create a RIF (or a RealIntervalField(n)) object from a
numeric expression:
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sage: r3 = RIF(sqrt(3)); r3
1.732050807568877?
sage: print(r3.str(style="brackets"))
[1.7320508075688769 .. 1.7320508075688775]

As
√

3 cannot be exactly represented in RealField(), it is represented by
an interval which contains the exact value. For printing, the default is to
use the “question style”, where the “known correct” part of the number,
followed by a question mark is printed. The question mark indicates that the
preceding digit is possibly wrong by at most ±1. The “brackets” style prints
outward approximations of the minimum and maximum of the interval
(bounds are stored in binary: what is printed are decimal values of the
bounds rounded in the direction of −∞ and +∞ respectively).

With the following instruction we fix the printing style to “brackets” (replace
brackets by question to go back to the default style):

sage: sage.rings.real_mpfi.printing_style = 'brackets'

When we create a RIF object from a number which can be exactly represented
in F , the interval created is a singleton (an interval of diameter 0), as
expected:

sage: r2 = RIF(2); r2, r2.diameter()
([2.0000000000000000 .. 2.0000000000000000], 0.000000000000000)

We can also create intervals of any size by giving two real numbers, and the
result is the smallest representable interval which contains them:

sage: rpi = RIF(sqrt(2),pi); rpi
[1.4142135623730949 .. 3.1415926535897936]
sage: RIF(0,+infinity)
[0.00000000000000000 .. +infinity]

• RealBallField(n) is the set of real balls, with a precision of n bits. The
default case (53 bits of precision) RealBallField() can be abbreviated by
RBF. Some available constructions are:

sage: RBF(pi)
[3.141592653589793 +/- 5.61e-16]
sage: RealBallField(100)(pi)
[3.14159265358979323846264338328 +/- 3.83e-30]

Observe that, like for intervals, exactly representable numbers produce a
ball of radius 0:

sage: RBF(2).rad()
0.00000000
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Some Methods for Intervals and Balls. The following methods do not
require further comment:

sage: si = sin(RIF(pi))
sage: si.contains_zero()
True
sage: sb = sin(RBF(pi))
sage: sb.contains_zero()
True

The standard functions exp, sin, cos, arcsin, arccos, sinh, cosh . . . are all defined,
and there exist methods to get the centre of an interval, the diameter of an
interval or a ball, a bisection method which cuts an interval into two almost equal
ones and so on. Note that the middle of an interval is not always in F , and thus
it is not always possible to cut an interval into two equal ones. Here is an extreme
case where the left sub-interval is a singleton, and the right one is identical to
the original interval:

sage: a = RealIntervalField(30)(1, RR(1).nextabove())
sage: a.bisection()
([1.0000000000 .. 1.0000000000], [1.0000000000 .. 1.0000000019])

For the same reason, the centre and diameter might be inexact:
sage: b = RealIntervalField(2)(-1,6)
sage: b.center(), b.diameter()
(2.0, 8.0)

It is also possible to build RealBallField() objects from RealIntervalField()
intervals and conversely:

sage: s = RIF(1,2)
sage: b = RBF(s)
sage: bpi = RBF(pi)
sage: ipi = RIF(bpi)

But beware:
sage: RIF(RBF(RIF(1,2))) == RIF(1,2)
False
sage: RBF(RIF(RBF(pi))) == RBF(pi)
False

Why that? The reason lies in the different implementations of both classes:

• As already said above, RealIntervalField(n) objects are represented by
pairs of RealField(n) numbers, and rely on the MPFI library [RR05].

• The implementation of RealBallField(n) objects is different: the ball
midpoint and its radius are stored, but only the midpoint is stored in
full-precision. The radius is represented by a floating-point number with
fixed-precision significand and arbitrary-precision exponent. Generally, a
few bits suffice for the radius. The implementation in Sage relies on the Arb
library [Joh13].
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Consequently, ball arithmetic is less computationally expensive than inf-sup
interval arithmetic and even, at high precision, it is not more expensive than
plain floating-point arithmetic.

11.4.2 Computing with Real Intervals and Real Balls
Once we have defined sets of intervals or balls, we must define functions operating
on them. For a given interval (or a ball) x, the range of a function f on x is
given by R(f,x) = {f(x) for x ∈ x}. For a continuous function f we just define
its interval extension F(x) as the smallest interval (or ball) included in F which
contains R(f,x).

Examples:

sage: E = RIF(-pi/4,pi)
sage: sin(E)
[-0.70710678118654769 .. 1.0000000000000000]
sage: E = RIF(-1,2); exp(E)
[0.36787944117144227 .. 7.3890560989306505]
sage: E = RIF(0,1); log(E)
[-infinity .. -0.00000000000000000]

For a set of standard functions (exp, sin, cos, arcsin, arccos, sinh, cosh, . . .), F(x)
is computed as precisely as possible and is a tight approximation of R(f,x).

But things become less obvious when we compose standard functions and
combine them with arithmetic operators. Example:

sage: E=RIF(-pi,pi)
sage: f = lambda x: sin(x)/x
sage: f(E)
[-infinity .. +infinity]

A mathematician could expect to get the interval [0, 1], extending s(x) = sin(x)/x
by continuity to 1 in 0. But interval arithmetic and ball arithmetic are not
substitutes for doing mathematical analysis! Actually for an interval x, the
interval s = sin(x) is evaluated and then s ÷ x is computed using the rules
described above for the division; this explains the result we got: sin(x)/x does
not belong to the set of standard functions.

We define the set E of elementary functions as the functions obtained by
combining standard functions, constants and variables using arithmetic operations
and composition. For example, consider f(x) = (1 + x2) sin(2x+ 1): this is an
elementary function. To evaluate the extension F(x) of f for a given interval (or
ball) x, we evaluate I1 = 2x + 1, I2 = 1 + x2, I3 = sin(I1) and then F(x) = I2.I3
(such a decomposition is generally not unique). From this it is not difficult to
deduce that, for an elementary function f , we just have:

R(f,x) ⊆ F(x).

Moreover, there often exist different possible extensions of a function to
intervals: for example let us consider the real valued function f1(x) = 1− x2; we



11.4. INTERVAL AND BALL ARITHMETIC 251

can also write it as f2(x) = 1− x · x or f3(x) = (1− x) · (1 + x). It turns out that
the extension of these functions to intervals are different. The reader will verify
by hand the following results:

sage: x = RIF(-1,1)
sage: 1-x^2
[0.00000000000000000 .. 1.0000000000000000]
sage: 1-x*x
[0.00000000000000000 .. 2.0000000000000000]
sage: (1-x)*(1+x)
[0.00000000000000000 .. 4.0000000000000000]

Exercise 43. Explain why the outputs of 1-xˆ2 and 1-x*x differ.

11.4.3 Some Examples of Applications
Finding Roots by Bisection. Let f : I 7→ R be a continuous elementary
function. We want to find all the zeros of f in I. More precisely, we want to
find (tiny) intervals such that their union contains all the zeros of f in I (and
with only one root by interval). Recall that for an interval x ⊂ I, we have
R(f,x) ⊆ F(x). Conversely, y /∈ F(x) ⇒ y /∈ R(f,x). Then we get a simple
algorithm: we recursively cut I into sub-intervals until a threshold size is attained;
for any sub-interval s, if 0 /∈ F(s), we can throw away s as we know that it
cannot contain any root. Moreover, when the bisection is finished, if we know the
derivative of f and if it is continuous, we can check that f is monotonic on all
the computed intervals, and so obtain a proof of the existence of only one root
by interval.

Example: find all the roots of sin(1/x) in the interval [1/64, 1/32], with a
precision of 100 bits (here, we compute with intervals):

sage: def bisect(funct,x,tol,zeros):
....: if 0 in funct(x):
....: if x.diameter()>tol:
....: x1,x2 = x.bisection()
....: bisect(funct,x1,tol,zeros)
....: bisect(funct,x2,tol,zeros)
....: else:
....: zeros.append(x)
sage: sage.rings.real_mpfi.printing_style = 'question'
sage: fs = lambda x: sin(1/x)
sage: d = RealIntervalField(100)(1/64,1/32)
sage: zeros = []
sage: bisect(fs,d,10^(-25),zeros)
sage: for s in zeros:
....: s
0.015915494309189533576888377?
0.01675315190441003534409303?
0.01768388256576614841876487?
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0.018724110951987686561045148?
0.01989436788648691697111047?
0.021220659078919378102517835?
0.02273642044169933368126911?
0.024485375860291590118289809?
0.026525823848649222628147293?
0.02893726238034460650343342?
sage: dfs = lambda x: -cos(1/x)/x^2
sage: not any([dfs(z).contains_zero() for z in zeros])
True

So, sin(1/x) has exactly 10 roots in the interval [1/64, 1/32]: this computation is
a proof.

Note that Newton’s method (see page 270) can be generalised to interval
arithmetic [Tuc11].

Proving that a Matrix is not Singular. Let us consider the matrix M of
size n with term Mi,j = (1 + log i)/(i2 + j2):

sage: def NearlySingularMatrix(R,n):
....: M=matrix(R,n,n)
....: for i in range(0,n):
....: for j in range(0,n):
....: M[i,j]= (1+log(R(1+i)))/((i+1)^2+(j+1)^2)
....: return M

We fix n = 35. Let us build M in RDF and compute its determinant:

sage: n=35
sage: NearlySingularMatrix(RDF,n).det()
0.0

So, the determinant seems to be zero. Now we compute with RBF balls:

sage: NearlySingularMatrix(RBF,n).det().contains_zero()
True

We cannot conclude whether the matrix is singular or not, as the computed ball
determinant contains zero. Let us compute with balls of growing precision:

sage: def tryDet(R,n):
....: p = 53
....: z = True
....: while z:
....: p += 100
....: MRF=NearlySingularMatrix(R(p),n)
....: d = MRF.det()
....: z = d.contains_zero()
....: return p,d
sage: tryDet(RealBallField,n)
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(1653, [9.552323592707808e-485 +/- 1.65e-501])

For a precision of 1653 bits, we have found a ball 9.552323592707808 · 10−485 ±
1.65 · 10−501 which contains the exact value of the determinant, and thus the
determinant of M is not equal to zero. We have proven that the matrix is non
singular (note that a more serious program should include, for safety, a limit to
the loop on the precision p).

We can make the same computation with intervals:

sage: tryDet(RealIntervalField,n)
(1653, 9.552323592707808?e-485)

Here also we get the same conclusion: M is non singular. Let us compare the
computing times:

sage: time p,d = tryDet(RealBallField,n)
CPU times: user 4.75 s, sys: 12 ms, total: 4.76 s
Wall time: 4.75 s
sage: time p,d = tryDet(RealIntervalField,n)
CPU times: user 6.62 s, sys: 8 ms, total: 6.63 s
Wall time: 6.62 s

As could be expected (1653 bits is a large precision!) RealBallField computations
are less expensive than RealIntervalField ones.

11.4.4 Complex Intervals and Complex Balls
ComplexIntervalField(n) and ComplexBallField(n) define square boxes in the
complex plane, with a precision of n bits. The default cases (53 bits of precision)
can be called CIF and CBF. Constructors accept numerical complex quantities:

sage: CBF(sqrt(2),pi)
[1.414213562373095 +/- 4.10e-16] + [3.141592653589793 +/- 5.61e-16]*I
sage: CIF(sqrt(2),pi)
1.414213562373095? + 3.141592653589794?*I
sage: CIF(sqrt(2)+pi*I)
1.414213562373095? + 3.141592653589794?*I
sage: CBF(sqrt(2)+pi*I)
[1.414213562373095 +/- 4.10e-16] + [3.141592653589793 +/- 5.61e-16]*I

and real intervals or balls:

sage: c = CIF(RIF(1,2),RIF(-3,3))
sage: c.real()
[1.0000000000000000 .. 2.0000000000000000]
sage: c.imag()
[-3.0000000000000000 .. 3.0000000000000000]
sage: CBF(RIF(1,2),RIF(-3,3))
[+/- 2.01] + [+/- 3.01]*I
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Standard functions are defined, and also methods to compute the argument, the
norm and so on:

sage: ComplexIntervalField(100)(1+I*pi).arg()
1.26262725567891168344432208361?
sage: ComplexBallField(100)(1+I*pi).arg()
[1.26262725567891168344432208360 +/- 6.60e-30]
sage: ComplexIntervalField(100)(1+I*pi).norm()
10.8696044010893586188344909999?

11.4.5 Usage and Limitations
First, not every computation can be carried out with balls or intervals. For
example, finding the roots of a polynomial is not implemented:

sage: (x^3+2*x-1).roots(ring=RR)
[(0.453397651516404, 1)]
sage: (x^3+2*x-1).roots(ring=RBF)
...
NotImplementedError: root finding for this polynomial not implemented

(and the same happens with ring=RIF). Linear algebra also has some limitations:
for example matrix inversion, computation of echelon form, minimal polynomial,
solution of linear systems are available, but not eigenvalue computations.

Secondly, in case both RealBallField and RealIntervalField are available
for a given computation, which one should we use? There is no definitive answer
but the examples above show that when dealing with potentially large intervals,
it is easier to use RealIntervalField, and that RealBallField is faster when
computing with numbers tainted by errors.

11.4.6 Interval Arithmetic is Used by Sage
Internally, Sage uses interval arithmetic; for example Sage can compute in the
field of algebraic numbers (roots of polynomials in Z[x]). Numbers are represented
by their minimal polynomial and computations are exact. But, how can we print
the results? How can we get a human understandable result? Interval arithmetic
is the answer (see also pages 140 and 275 of this book):

sage: x=QQbar(sqrt(3)); x
1.732050807568878?
sage: x.interval(RealIntervalField(100))
1.73205080756887729352744634151?

11.5 Conclusion
All numerical methods implemented in Sage, as those described in the next
chapters, have been theoretically studied: this numerical analysis includes studying
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Sets of floating-point numbers

Machine floating-point numbers RDF
Machine complex floating-point numbers CDF
Real numbers with a precision of p bits RealField(p)

Complex numbers with a precision of p bits ComplexField(p)
Real intervals with a precision of p bits RealIntervalField(p)

Complex intervals with a precision of p bits ComplexIntervalField(p)
Real balls with a precision of p bits RealBallField(p)

Complex balls with a precision of p bits ComplexBallField(p)

Table 11.2 – A summary of floating-point classes.

the convergence of the iterative methods, the error introduced when simplifying a
problem to make it computable, but also the behaviour of the computations in
presence of perturbations such as those introduced by the inexact arithmetic of
the floating-point numbers.

Let us consider an algorithm F which, from some data d, computes x = F(d).
This algorithm can only be used if it does not increase the errors on d too much:
to a perturbation ε of d corresponds a perturbed solution xε = F(d + ε). It is
absolutely necessary that the error xε − x introduced depends only moderately
on ε (in a continuous way, does not grow too fast, ...): all numerical algorithms
must have stability properties to be usable. In Chapter 13, we will explore the
stability problems for the algorithms used in numerical linear algebra.

Let us also remark that some computations are definitively not possible in finite
precision, like for example the sequence given in Exercise 42: every perturbation,
however small, will lead the sequence to converge to a wrong value. This is a
typical instability for the solution of a problem: the experimental study of a
sequence with floating-point numbers should be performed with great care.

The reader might find that performing computations with floating-point
numbers is hopeless, but this opinion should be moderated: an overwhelming part
of available computing resources is used to perform computations in these sets of
numbers: the approximate solution of partial differential equations, optimisation
or signal processing, etc. Floating-point numbers should be used with care, but
they did not prevent the development of computing and its applications: rounding
errors do not limit the validity of numerical weather forecasts, to give only one
obvious example.

Interval arithmetic seems to appear first in the works of Ramon E. Moore in
1966 [Moo66] (even if the idea appears before the computer era), but new software
developments (such as MPFI and Arb used by Sage) as well as some spectacular
applications draw attention to it: some famous old mathematical conjectures have
proofs which rely at least partially on interval computations. For example, we
may mention the Kepler conjecture in 1998 by Thomas C. Hales, or the ternary
Goldbach problem by Harald A. Helfgott in 2013.
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12
Non-Linear Equations

This chapter explains how to solve a non-linear equation using Sage. We first
study polynomial equations and show the limitations of the search for exact
solutions. We then describe some classical numerical solving methods, while
indicating the numerical algorithms implemented in Sage.

12.1 Algebraic Equations
An algebraic equation is an equation of the form p(x) = 0, where p is a polynomial
in one variable with coefficients in an integral domain A. We say that an element
α ∈ A is a root of the polynomial p if p(α) = 0.

Let α be an element of A. Polynomial long division of p by x − α yields a
constant polynomial r such that

p = (x− α)q + r.

Upon evaluating this equation at x = α, we get r = p(α). So the polynomial
x− α divides p if and only if α is a root of p. This remark leads to the notion of
multiplicity of a root α of the polynomial p: it is the largest integer m such that
(x− α)m divides p. We note that the sum of the multiplicities of the roots of p is
less than or equal to the degree of p.

12.1.1 The Method Polynomial.roots()
To solve the algebraic equation p(x) = 0 means to identify the roots of the
polynomial p and their multiplicities. The method Polynomial.roots() finds the
roots of a polynomial. It takes up to three parameters, all of them optional. The
parameter ring indicates the ring in which to search for the roots. If we do not
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give a value to this parameter, Sage uses the coefficient ring of the polynomial. The
boolean parameter multiplicities specifies whether the information returned
by Polynomial.roots() should consist of both roots and multiplicities. The
parameter algorithm indicates which algorithm to use; the possible values are
described below (see §12.2.2).

sage: R.<x> = PolynomialRing(RealField(prec=10))
sage: p = 2*x^7 - 21*x^6 + 64*x^5 - 67*x^4 + 90*x^3 \
....: + 265*x^2 - 900*x + 375
sage: p.roots()
[(-1.7, 1), (0.50, 1), (1.7, 1), (5.0, 2)]
sage: p.roots(ring=ComplexField(10), multiplicities=False)
[-1.7, 0.50, 1.7, 5.0, -2.2*I, 2.2*I]
sage: p.roots(ring=RationalField())
[(1/2, 1), (5, 2)]

12.1.2 Representation of Numbers
We recall how to denote commonly-used rings with Sage (see §5.2). Integers are
represented by objects of the class Integer; conversions are performed using the
parent ZZ or the function IntegerRing(), which returns the object ZZ. Similarly,
rational numbers are represented by objects of the class Rational; the parent of
these objects is the object QQ, which is returned by the function RationalField().
In both cases Sage uses the arbitrary precision library GMP. Without diving into
the inner workings of this library, the integers used by Sage have arbitrary size,
limited only by the available memory of the machine on which the software is
run.

Several approximate representations of real numbers are available (see Chap-
ter 11). There is RealField() — or Reals() — for floating-point numbers with
a given precision and, in particular, RR for 53-bit precision. Representations using
machine double precision are afforded by RDF, short for RealDoubleField().
There is also the class RIF — short for RealIntervalField() — in which a real
number is represented by an interval containing it; the endpoints of this interval
are floating-point numbers.

The analogous representations for complex numbers are: CC, CDF, and CIF.
Again, to which object is associated a function, namely ComplexField(), Complex-
DoubleField(), and ComplexIntervalField().

The computations performed by Polynomial.roots() are exact or approx-
imate depending on the representation of the polynomial’s coefficients and (if
specified) the value of the parameter ring: for instance, given ZZ or QQ, the
computation is exact; given RR it is approximate. In the second part of this
chapter we describe the algorithm used for the computation of the roots and
specify the role of the parameters ring and algorithm (see §12.2).

Solving algebraic equations is intimately related to the notion of number. The
splitting field of a nonconstant polynomial p is the smallest field extension of the
coefficient field in which p is a product of polynomials of degree 1; one can prove
that such an extension always exists. In Sage, we can construct the splitting field
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of an irreducible polynomial with the method Polynomial.root_field(). We
can then compute with the roots implicitly contained in the splitting field.

sage: R.<x> = PolynomialRing(QQ, 'x')
sage: p = x^4 + x^3 + x^2 + x + 1
sage: K.<alpha> = p.root_field()
sage: p.roots(ring=K, multiplicities=None)
[alpha, alphâ 2, alphâ 3, -alphâ 3 - alphâ 2 - alpha - 1]
sage: alphâ 5
1

12.1.3 The Fundamental Theorem of Algebra
The splitting field of the polynomial with real coefficients x2 + 1 is precisely the
field of complex numbers. It is remarkable that every nonconstant polynomial
with complex coefficients has at least one complex root: this is the content of
the Fundamental Theorem of Algebra. Therefore, every nonconstant complex
polynomial is a product of polynomials of degree 1. We noted above that the
sum of the multiplicities of the roots of a polynomial p is less than or equal to the
degree of p. In other words, every polynomial equation of degree n with complex
coefficients has n complex roots, counted with multiplicity.

Let’s see how the method Polynomial.roots() can be used to illustrate
this result. In the following example, we construct the ring of polynomials with
real coefficients (represented by floating-point numbers with a precision of 53
bits). Then a polynomial of degree less than 15 is picked randomly from this ring.
Finally we add the multiplicities of the complex roots computed with the method
Polynomial.roots() and we compare this sum to the degree of the polynomial.

sage: R.<x> = PolynomialRing(RR, 'x')
sage: d = ZZ.random_element(1, 15)
sage: p = R.random_element(d)
sage: p.degree() == sum(r[1] for r in p.roots(CC))
True

12.1.4 Distribution of the Roots
We give a curious illustration of the power of the method Polynomial.roots():
we plot all points in the complex plane whose corresponding complex number is a
root of a polynomial of degree 12 and with coefficients in the set {−1, 1}. The
choice of degree is rather arbitrary, made in order to obtain a sufficiently detailed
plot in a short amount of time. The usage of approximate values for the complex
numbers is also motivated by performance reasons (see §13).

sage: def build_complex_roots(degree):
....: R.<x> = PolynomialRing(CDF, 'x')
....: v = []
....: for c in cartesian_product([[-1, 1]] * (degree + 1)):
....: v.extend(R(list(c)).roots(multiplicities=False))
....: return v
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Figure 12.1 – Distribution of roots of all degree-12 polynomials with coefficients −1 or 1.

sage: data = build_complex_roots(12)
sage: points(data, pointsize=1, aspect_ratio=1)

12.1.5 Solvability in Radicals

In certain cases it is possible to compute the exact value of the roots of a
polynomial. This occurs for instance when we can express the roots in terms of
the coefficients of the polynomial and using radicals (square roots, cubic roots,
etc.). We then say that the polynomial is solvable in radicals.

To solve in radicals with Sage, we must work with objects of the class
Expression which represent symbolic expressions. We have seen that inte-
gers represented by objects of the class Integer have the same parent, namely the
object ZZ. Similarly, the objects of the class Expression have the same parent:
the object SR (short for Symbolic Ring); this allows to convert into the class
Expression.

sage: a, b, c, x = var('a, b, c, x')
sage: p = a * x^2 + b * x + c
sage: type(p)
<type 'sage.symbolic.expression.Expression'>
sage: p.parent()
Symbolic Ring
sage: p.roots(x)
[(-1/2*(b + sqrt(b^2 - 4*a*c))/a, 1),
(-1/2*(b - sqrt(b^2 - 4*a*c))/a, 1)]
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Degree Strictly Bigger than 2. Algebraic equations of degree 3 and 4 are
solvable in radicals. However, it is generally impossible to solve in radicals
polynomial equations of degree at least 5 (see §7.3.4). This impossibility leads to
investigate numerical solution methods (see §12.2).

sage: a, b, c, d, e, f, x = var('a, b, c, d, e, f, x')
sage: p = a*x^5+b*x^4+c*x^3+d*x^2+e*x+f
sage: p.roots(x)
Traceback (most recent call last):
...
RuntimeError: no explicit roots found

We use Sage to illustrate a method for solving equations of degree 3 over
the field of complex numbers. We start by showing that the general equation of
degree 3 can be reduced to the form x3 + px+ q = 0.

sage: x, a, b, c, d = var('x, a, b, c, d')
sage: P = a * x^3 + b * x^2 + c * x + d
sage: alpha = var('alpha')
sage: P.subs(x = x + alpha).expand().coefficient(x, 2)
3*a*alpha + b
sage: P.subs(x = x - b / (3 * a)).expand().collect(x)
a*x^3 - 1/3*(b^2/a - 3*c)*x + 2/27*b^3/a^2 - 1/3*b*c/a + d

To obtain the roots of an equation of the form x3 +px+q = 0, we set x = u+v.
sage: p, q, u, v = var('p, q, u, v')
sage: P = x^3 + p * x + q
sage: P.subs(x = u + v).expand()
u^3 + 3*u^2*v + 3*u*v^2 + v^3 + p*u + p*v + q

Let’s assume the last expression is zero. We then note that u3 + v3 + q = 0 is
equivalent to 3uv + p = 0; moreover, if these equalities hold, u3 and v3 satisfy
an equation of degree two: (X − u3)(X − v3) = X2 − (u3 + v3)X + (uv)3 =
X2 + qX − p3/27.

sage: P.subs({x: u + v, q: -u^3 - v^3}).factor()
(3*u*v + p)*(u + v)
sage: P.subs({x: u+v, q: -u^3 - v^3, p: -3 * u * v}).expand()
0
sage: X = var('X')
sage: solve([X^2 + q*X - p^3 / 27 == 0], X, solution_dict=True)
[{X: -1/2*q - 1/18*sqrt(12*p^3 + 81*q^2)},
{X: -1/2*q + 1/18*sqrt(12*p^3 + 81*q^2)}]

The solutions of the equation x3 + px+ q = 0 are therefore the sums u+ v
where u and v are the cube roots of

−
√

4p3 + 27q2
√

3
18 − q

2 and
√

4p3 + 27q2
√

3
18 − q

2
satisfying 3uv + p = 0.
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12.1.6 The Method Expression.roots()
The preceding examples use the method Expression.roots(). This method
returns a list of exact roots, not guaranteed to be complete. Among the optional
parameters of this method, we find the parameters ring and multiplicities
already seen for the method Polynomial.roots(). It is important to keep in mind
that the method Expression.roots() is not restricted to polynomial expressions.

sage: e = sin(x) * (x^3 + 1) * (x^5 + x^4 + 1)
sage: roots = e.roots(); len(roots)
9
sage: roots
[(0, 1),
(-1/2*(1/18*sqrt(23)*sqrt(3) - 1/2)̂ (1/3)*(I*sqrt(3) + 1) - 1/6*(-I*

sqrt(3) + 1)/(1/18*sqrt(23)*sqrt(3) - 1/2)̂ (1/3),
1),
(-1/2*(1/18*sqrt(23)*sqrt(3) - 1/2)̂ (1/3)*(-I*sqrt(3) + 1) - 1/6*(I*

sqrt(3) + 1)/(1/18*sqrt(23)*sqrt(3) - 1/2)̂ (1/3),
1),
((1/18*sqrt(23)*sqrt(3) - 1/2)̂ (1/3) + 1/3/(1/18*sqrt(23)*sqrt(3) -

1/2)̂ (1/3),
1),
(-1/2*I*sqrt(3) - 1/2, 1),
(1/2*I*sqrt(3) - 1/2, 1),
(1/2*I*sqrt(3)*(-1)̂ (1/3) - 1/2*(-1)̂ (1/3), 1),
(-1/2*I*sqrt(3)*(-1)̂ (1/3) - 1/2*(-1)̂ (1/3), 1),
((-1)̂ (1/3), 1)]

If the parameter ring is not specified, the method roots() of the class
Expression delegates the computation of the roots to Maxima, which tries to
factor the expression, then solves in radicals each factor of degree strictly less than
5. When the parameter ring is specified, the expression is converted into an object
of the class Polynomial whose coefficients have as parent the object identified
by the parameter ring; then the result of the method Polynomial.roots() is
returned. We will describe the algorithm used in this case below (see §12.2.2).

It is also possible to compute with implicit roots, which we can access via the
objects QQbar and AA representing the field of algebraic numbers (see §7.3.2).

Elimination of Multiple Roots. Given a polynomial p with multiple roots,
it is possible to construct a polynomial with simple roots (that is, of multiplicity
1), identical to those of p. Hence, when computing the roots of a polynomial,
we can assume that these roots are simple. We first prove the existence of the
polynomial with simple roots and then show how to construct it. This will give a
new illustration of the method Expression.roots().

Let α be a root of the polynomial p with multiplicity m > 1. It is a root
of the derivative p′ with multiplicity m − 1. In fact, if p = (x − α)mq then
p′ = (x− α)m−1(mq + (x− α)q′).
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sage: alpha, m, x = var('alpha, m, x'); q = function('q')(x)
sage: p = (x - alpha)^m * q
sage: p.derivative(x)
(-alpha + x)^(m - 1)*m*q(x) + (-alpha + x)^m*diff(q(x), x)
sage: simplify(p.derivative(x)(x=alpha))
0

Therefore, the gcd of p and p′ is the product
∏
α∈Γ(x − α)mα−1, where Γ

is the set of roots of p with multiplicity strictly greater than 1, and mα is the
multiplicity of the root α. If d denotes this gcd, then the quotient p/d has the
desired properties.

Note that the degree of the quotient of p by d is strictly less than the degree
of p. In particular, if this degree is strictly less than 5, it is possible to express the
roots in terms of radicals. The following example illustrates this for a polynomial
of degree 13 with rational coefficients.

sage: R.<x> = PolynomialRing(QQ, 'x')
sage: p = 128 * x^13 - 1344 * x^12 + 6048 * x^11 - 15632 * x^10 \
....: + 28056 * x^9 - 44604 * x^8 + 71198 * x^7 - 98283 * x^6 \
....: + 105840 * x^5 - 101304 * x^4 + 99468 * x^3 - 81648 * x^2 \
....: + 40824 * x - 8748
sage: d = gcd(p, p.derivative())
sage: (p // d).degree()
4
sage: roots = SR(p // d).roots(multiplicities=False)
sage: roots
[1/2*I*sqrt(3)*2^(1/3) - 1/2*2^(1/3),
-1/2*I*sqrt(3)*2^(1/3) - 1/2*2^(1/3),
2^(1/3),
3/2]

sage: [QQbar(p(alpha)).is_zero() for alpha in roots]
[True, True, True, True]

12.2 Numerical Solution
There is a traditional dichotomy in mathematics between the discrete and the
continuous. Numerical analysis bridges this gap to some extent: a major aspect
of numerical analysis is the study of questions about real numbers (firmly part of
the continuous domain) via an experimental point of view, often assisted by a
computer, which belongs to the discrete domain.

Regarding the solution of non-linear equations, numerous natural questions
arise beyond the computation of approximate values: how many real roots does a
given equation have? How many imaginary, positive, or negative roots are there?

In this section we start to answer such questions in the special case of algebraic
equations. Then we describe some of the methods for computing approximate
solutions of a non-linear equation.
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12.2.1 Location of Solutions of Algebraic Equations
Descartes’ Rule. Descartes’ rule of signs is the following: the number of
positive roots of a polynomial with real coefficients is less than or equal to the
number of sign changes in the sequence of coefficients of the polynomial.

sage: R.<x> = PolynomialRing(RR, 'x')
sage: p = x^7 - 131/3*x^6 + 1070/3*x^5 - 2927/3*x^4 \
....: + 2435/3*x^3 - 806/3*x^2 + 3188/3*x - 680
sage: l = [c for c in p.coefficients(sparse=False) if not c.is_zero()]
sage: sign_changes = [l[i]*l[i+1] < 0 for i in range(len(l)-1)].count(True)
sage: real_positive_roots = \
....: sum([alpha[1] if alpha[0] > 0 else 0 for alpha in p.roots()])
sage: sign_changes, real_positive_roots
(7, 5)

Indeed, let p be a degree-d polynomial with real coefficients and let p′ be its
derivative. We denote by u and u′ the sequences of the signs of the coefficients of
the polynomials p and p′: we have ui = ±1 depending on whether the degree-i
coefficient of p is positive or negative. The sequence u′ is a simple truncation of
u: we have u′i = ui+1 for 0 ≤ i < d. If follows that the number of sign changes of
the sequence u is at most one plus the number of sign changes of the sequence u′.

On the other hand, the number of positive roots of p is at most equal to one
plus the number of positive roots of p′: any interval whose endpoints are roots of
p always contains a root of p′.

As Descartes’ rule holds for a degree-1 polynomial, the above observations
show that it also holds for a degree-2 polynomial, etc.

Moreover, the difference between the number of positive roots and the number
of sign changes in the sequence of coefficients is always even.

Isolating the Real Roots of a Polynomial. Given a polynomial with real
coefficients, we have seen that it is possible to bound from above the number of
roots contained in the interval [0,+∞). More generally, there are methods for
finding the number of roots contained in a given interval.

One such result is Sturm’s Theorem. Let p be a degree-d polynomial with real
coefficients and let [a, b] be an interval. We construct recursively a sequence of
polynomials. We start with p0 = p and p1 = p′; then pi+2 is the negative of the
remainder of the polynomial division of pi by pi+1. By evaluating this sequence of
polynomials at the points a and b we get two finite real sequences (p0(a), . . . , pd(a))
and (p0(b), . . . , pd(b)). Sturm’s Theorem is the following: if p has simple roots,
p(a) 6= 0 and p(b) 6= 0, then the number of roots of p contained in the interval
[a, b] equals the number of sign changes of the sequence (p0(a), . . . , pd(a)) minus
the number of sign changes of the sequence (p0(b), . . . , pd(b)).

Here is how we can implement this theorem in Sage.
sage: def count_sign_changes(p):
....: l = [c for c in p if not c.is_zero()]
....: changes = [l[i]*l[i + 1] < 0 for i in range(len(l) - 1)]
....: return changes.count(True)
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sage: def sturm(p, a, b):
....: assert p.degree() > 2
....: assert not (p(a) == 0)
....: assert not (p(b) == 0)
....: assert a <= b
....: remains = [p, p.derivative()]
....: for i in range(p.degree() - 1):
....: remains.append(-(remains[i] % remains[i + 1]))
....: evals = [[], []]
....: for q in remains:
....: evals[0].append(q(a))
....: evals[1].append(q(b))
....: return count_sign_changes(evals[0]) \
....: - count_sign_changes(evals[1])

Here is an example of usage of this function sturm().

sage: R.<x> = PolynomialRing(QQ, 'x')
sage: p = (x - 34) * (x - 5) * (x - 3) * (x - 2) * (x - 2/3)
sage: sturm(p, 1, 4)
2
sage: sturm(p, 1, 10)
3
sage: sturm(p, 1, 200)
4
sage: p.roots(multiplicities=False)
[34, 5, 3, 2, 2/3]
sage: sturm(p, 1/2, 35)
5

12.2.2 Iterative Approximation Methods

In this section we illustrate various ways of approximating the solutions of a
non-linear equation f(x) = 0. There are essentially two approaches to such
approximations. The most efficient algorithm mixes the two approaches.

The first approach constructs a sequence of nested intervals that contain a
solution of the equation. We control the precision and convergence is guaranteed,
but the convergence speed is not always good.

The second approach starts with a given approximate value of one of the
solutions of the equation. If the local behaviour of the function f is sufficiently
regular, we can compute a new, more accurate approximation to the solution. By
recurrence, we get a sequence of approximate values. This approach assumes that
we know a first approximation of the desired number. Moreover, its performance
depends on a good local behaviour of the function f : we cannot dictate a priori the
precision of the answer; worse, the convergence of the sequence of approximations
is not necessarily guaranteed.
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Throughout this section, we consider a non-linear equation f(x) = 0 where
f is a numerical function defined on the interval [a, b] and continuous on this
interval. We assume that the values of f at the endpoints of the interval [a, b] are
non-zero and of opposite signs: in other words, the product f(a)f(b) is strictly
negative. The continuity of f guarantees the existence of at least one solution of
the equation f(x) = 0 in the interval [a, b].

For each of the methods we discuss, we experiment with the following function.
sage: f(x) = 4 * sin(x) - exp(x) / 2 + 1
sage: a, b = RR(-pi), RR(pi)
sage: bool(f(a) * f(b) < 0)
True

We should note that, for this function, the command solve is not useful.
sage: solve(f(x) == 0, x)
[sin(x) == 1/8*e^x - 1/4]

sage: f.roots()
Traceback (most recent call last):
...
RuntimeError: no explicit roots found

The algorithms for solving non-linear equations can be very time-consuming:
it is advisable to take certain precautions before proceeding. In particular, we
should ensure that solutions exist by studying the continuity and differentiability
of the function in question, as well as its sign changes; plotting the graph of the
function can be useful here (see Chapter 4).

The Bisection Method. This method is based on the first approach: construct
a sequence of nested intervals, each of which containing a solution of the equation
f(x) = 0.

We find the midpoint c of the interval [a, b]. Suppose that f(c) 6= 0 (otherwise
we have found a solution). Either f(a)f(c) is negative, so that the interval [a, c]
must contain a solution of the equation; or f(c)f(b) is negative, so that the
interval [c, b] contains a solution of the equation. Therefore, we can construct an
interval containing a solution, and whose length is half the length of the interval
[a, b]. By iterating this construction, we obtain a sequence of intervals with the
expected properties. To implement this approach, we define a Python function
intervalgen as follows.

sage: def phi(s, t): return (s + t) / 2
sage: def intervalgen(f, phi, s, t):
....: msg = 'Wrong arguments: f({0})*f({1})>=0)'.format(s, t)
....: assert (f(s) * f(t) < 0), msg
....: yield s
....: yield t
....: while True:
....: u = phi(s, t)
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Figure 12.2 – Graph of the function f .

....: yield u

....: if f(u) * f(s) < 0:

....: t = u

....: else:

....: s = u

The definition of this function deserves explanation. The keyword yield in
the definition of intervalgen turns it into a generator (see §15.2.4). When
the method next() of a generator is called, if the interpreter sees the keyword
yield, all local data are saved, the execution is interrupted and the expression
immediately at the right of the keyword is returned. The following call of the
method next() restores the local data that was saved before the interruption and
continues from the line following the keyword yield. The usage of the keyword
yield inside an infinite loop (while True:) allows the implementation of a
recursive sequence via a syntax that resembles closely its mathematical definition.
It is possible to stop the execution completely by using the keyword return.

The parameter phi is a function that specifies the approximation method.
For the bisection method, this function computes the midpoint of an interval. In
order to test other iterative approximation methods that also use nested intervals,
we need to give a new definition of the function phi and can then use the function
intervalgen to construct the corresponding generator.

The parameters s and t of the function specify the endpoints of the first
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interval. The call to assert verifies that the function f changes sign between
the endpoints of this interval; as we have seen, this guarantees the existence of a
solution.

The first two values of the generator are the values of the parameters s and t.
The third value is the midpoint of the corresponding interval. The parameters s
and t then represent the endpoints of the last interval computed. After evaluating
f at the midpoint of this interval, we change one of the endpoints of the interval
in such a way that the new interval still contains a solution. We agree to take as
approximation of the desired solution the midpoint of the last interval computed.

We experiment with the chosen example: here are three approximations
obtained by the bisection method applied to the interval [−π, π].

sage: a, b
(-3.14159265358979, 3.14159265358979)
sage: bisection = intervalgen(f, phi, a, b)
sage: bisection.next()
-3.14159265358979
sage: bisection.next()
3.14159265358979
sage: bisection.next()
0.000000000000000

In order to compare the different approximation methods, it is useful to
automate the computation of approximate solutions to the equation f(x) = 0
using the generators defined in Sage for each of the methods. This mechanism
should allow us to control the precision and the maximum number of iterations.
This role is taken by the function iterate defined below.

sage: from types import GeneratorType, FunctionType
sage: def checklength(u, v, w, prec):
....: return abs(v - u) < 2 * prec
sage: def iterate(series, check=checklength, prec=10^-5, maxit=100):
....: assert isinstance(series, GeneratorType)
....: assert isinstance(check, FunctionType)
....: niter = 2
....: v, w = series.next(), series.next()
....: while niter <= maxit:
....: niter += 1
....: u, v, w = v, w, series.next()
....: if check(u, v, w, prec):
....: print('After {0} iterations: {1}'.format(niter, w))
....: return
....: print('Failed after {0} iterations'.format(maxit))

The parameter series must be a generator. We keep the last three values
of this generator to verify convergence. This is the role of the parameter check:
a function that may or may not stop the iterations. By default the function
iterate uses the function checklength which stops the iterations if the last
interval computed has length strictly less than twice the parameter prec; this
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guarantees that the value computed by bisection approximates the solution with
an error strictly less than prec.

An exception is raised once the number of iterations is larger than the param-
eter maxit.

sage: bisection = intervalgen(f, phi, a, b)
sage: iterate(bisection)
After 22 iterations: 2.15847275559132

Exercise 44. Modify the function intervalgen so that the generator stops if one
of the endpoints of the interval is a solution.

Exercise 45. Use the functions intervalgen and iterate to compute the approxi-
mation to a solution of the equation f(x) = 0 using nested intervals, each interval being
obtained by dividing the previous one at a randomly chosen point.

The False Position Method. This method also uses the first approach:
construct a sequence of nested intervals that contain a solution of the equation
f(x) = 0. However, it employs linear interpolation of the function f for dividing
each interval.

More precisely, to divide the interval [a, b], we consider the segment joining the
two points on the graph of f with x-coordinates a and b. As f(a) and f(b) have
opposite signs, this segment intersects the x-axis, thereby dividing the interval
[a, b] into two subintervals. As in the bisection method, we identify the subinterval
containing a solution by computing the value of f at the common point of the
two subintervals.

The line through the points (a, f(a)) and (b, f(b)) has equation

y = f(b)− f(a)
b− a

(x− a) + f(a). (12.1)

Since f(b) 6= f(a), this line intersects the x-axis in the point with x-coordinate

a− f(a) b− a
f(b)− f(a) .

We can therefore test this method as follows.
sage: phi(s, t) = s - f(s) * (t - s) / (f(t) - f(s))
sage: falsepos = intervalgen(f, phi, a, b)
sage: iterate(falsepos)
After 8 iterations: -2.89603757331027

It is important to note that the sequences constructed by the bisection and
false position methods do not necessarily converge to the same solution. By
shrinking the interval of study, we recover the positive solutions obtained via the
bisection method.

sage: a, b = RR(pi/2), RR(pi)
sage: phi(s, t) = t - f(t) * (s - t) / (f(s) - f(t))
sage: falsepos = intervalgen(f, phi, a, b)
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Figure 12.3 – The false position method on [−π, π].

sage: phi(s, t) = (s + t) / 2
sage: bisection = intervalgen(f, phi, a, b)
sage: iterate(falsepos)
After 15 iterations: 2.15846441170219
sage: iterate(bisection)
After 20 iterations: 2.15847275559132

Newton’s Method. Like the false position method, Newton’s method uses
a linear approximation of the function f . From a graphical point of view, we
consider a tangent to the graph of f as approximating this graph.

We assume that f is differentiable and the derivative f ′ has the same sign
in the interval [a, b]; hence f is monotone. We also assume that f changes sign
in the interval [a, b]. The equation f(x) = 0 then has a unique solution in this
interval; we denote it by α.

Let u0 ∈ [a, b]. The tangent to the graph of f at the point of x-coordinate u0
has equation

y = f ′(u0)(x− u0) + f(u0). (12.2)

The coordinates of intersection of this line with the x-axis are

(u0 − f(u0)/f ′(u0), 0).
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Figure 12.4 – The false position method on [π/2, π].

We denote by ϕ the function x 7→ x − f(x)/f ′(x). It is defined if f ′ does not
vanish on the interval [a, b]. We are interested in the recursive sequence u defined
by un+1 = ϕ(un).

If the sequence u converges1, then its limit ` satisfies ` = `− f(`)/f ′(`), hence
f(`) = 0; the limit is therefore equal to α, the solution of the equation f(x) = 0.

So that our example satisfies the monotonicity hypotheses, we have to shrink
the interval of study.

sage: f.derivative()
x |--> 4*cos(x) - 1/2*e^x
sage: a, b = RR(pi/2), RR(pi)

We define a Python generator newtongen representing the recursive sequence
that we defined above. Then we define a new convergence test checkconv that
stops the iterations if the last two computed terms are sufficiently close; of course
this test does not guarantee the convergence of the sequence of approximations.

sage: def newtongen(f, u):
....: while True:
....: yield u
....: u -= f(u) / f.derivative()(u)

1A theorem of L. Kantorovich gives a sufficient condition for the convergence of Newton’s
method.
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Figure 12.5 – Newton’s method.

sage: def checkconv(u, v, w, prec):
....: return abs(w - v) / abs(w) <= prec

We can now test Newton’s method on our example.

sage: iterate(newtongen(f, a), check=checkconv)
After 6 iterations: 2.15846852566756

The Secant Method. The computation of the derivative in Newton’s method
can be expensive. It is possible to replace it by a linear interpolation: given two
approximations to the solution, hence two points on the graph of f , if the line
through these two points intersects the x-axis, we take the x-coordinate of the
intersection point as the new approximation. To start the construction, or when
this line is parallel to the x-axis, we use Newton’s method.

This gives rise to the same iterative formula as the false position method, but
applied at different points. Contrary to the false position method, the secant
method does not provide an interval that contains a solution.

We define a Python generator that implements this method.

sage: def secantgen(f, a):
....: yield a
....: estimate = f.derivative()(a)
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Figure 12.6 – The secant method.

....: b = a - f(a) / estimate

....: yield b

....: while True:

....: fa, fb = f(a), f(b)

....: if fa == fb:

....: estimate = f.derivative()(a)

....: else:

....: estimate = (fb - fa) / (b - a)

....: a = b

....: b -= fb / estimate

....: yield b

We can now test the secant method on our example.
sage: iterate(secantgen(f, a), check=checkconv)
After 8 iterations: 2.15846852557553

Muller’s Method. It is possible to extend the secant method by replacing f
by polynomial approximations of any degree. For instance, Muller’s method2 uses
quadratic approximations.

2This is David E. Muller, also known for inventing Reed-Muller codes, and not Jean-Michel
Muller mentioned in Chapter 11.
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Suppose we have constructed three approximations r, s, and t of the solution
to the equation f(x) = 0. We consider the Lagrange interpolation polynomial
defined by the three points on the graph of f with x-coordinates r, s, and t. It
is a second-degree polynomial. We take as new approximation the root of this
polynomial that is closest to t. The first three terms of the sequence are just
taken to be a, b, and (a+ b)/2.

We should note that the roots of the polynomials — and hence the computed
approximations — can be complex numbers.

The implementation of this method in Sage is not difficult; it can be done
similarly to the secant method. However, our implementation uses a data structure
that is better suited to enumerating the terms of a recursive sequence.

sage: from collections import deque
sage: basering = PolynomialRing(CC, 'x')
sage: def quadraticgen(f, r, s):
....: t = (r + s) / 2
....: yield t
....: points = deque([(r,f(r)), (s,f(s)), (t,f(t))], maxlen=3)
....: while True:
....: pol = basering.lagrange_polynomial(points)
....: roots = pol.roots(ring=CC, multiplicities=False)
....: u = min(roots, key=lambda x: abs(x - points[2][0]))
....: points.append((u, f(u)))
....: yield points[2][0]

The module collections of the Python standard library provides several
data structures. In quadraticgen, the class deque is used to store the last
approximations computed. A deque object stores data up to the limit maxlen
specified at its creation; here the maximum number of stored data is the recurrence
order of the sequence of approximations. Once a deque object reaches its maximum
storage capacity, the method deque.append() inserts new data according to the
rule “first in, first out”.

Note that the iterations of this method do not require the computation of
derivatives. Moreover, each iteration only requires one evaluation of the function f .

sage: generator = quadraticgen(f, a, b)
sage: iterate(generator, check=checkconv)
After 5 iterations: 2.15846852554764

Back to Polynomials. We return to the situation studied at the beginning
of the chapter: compute the roots of a polynomial P with real coefficients. We
assume that P is monic:

P = a0 + a1x+ . . .+ ad−1x
d−1 + xd.
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It is easy to check that P is the characteristic polynomial of the companion matrix
(see §8.2.3):

A =


0 0 0 . . . 0 −a0
1 0 0 . . . 0 −a1
0 1 0 . . . 0 −a2
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 −ad−1

 .

Therefore, the roots of the polynomial P are the eigenvalues of the matrix A. We
can therefore apply the methods of Chapter 13.

We have seen that the method Polynomial.roots() takes up to three pa-
rameters, all optional: ring, multiplicities, and algorithm. Assume that
a Sage object of the Polynomial class has name p (so that isinstance(p,
’Polynomial’) returns True). The algorithm used by the command p.roots()
then depends on the parameters ring and algorithm, as well as on the coefficient
ring of the polynomial, that is p.base_ring().

The algorithm checks whether arithmetic operations in ring and p.base_ring()
are exact. If this is not the case, the approximations to the roots are computed via
the library NumPy if p.base_ring() is RDF or CDF, or via the library PARI/GP
otherwise (the parameter algorithm allows the user to override this and specify
which library to use). By looking at the source code of NumPy, we see that the
root approximation method used by this library computes the eigenvalues of the
companion matrix.

The following command identifies which objects have exact arithmetic opera-
tions (the method Ring.is_exact() returning True in this case).

sage: for ring in [ZZ, QQ, QQbar, RDF, RIF, RR, AA, CDF, CIF, CC]:
....: print("{0:50} {1}".format(ring, ring.is_exact()))
Integer Ring True
Rational Field True
Algebraic Field True
Real Double Field False
Real Interval Field with 53 bits of precision False
Real Field with 53 bits of precision False
Algebraic Real Field True
Complex Double Field False
Complex Interval Field with 53 bits of precision False
Complex Field with 53 bits of precision False

When the parameter ring is AA or RIF, while p.base_ring() is ZZ, QQ or
AA, the algorithm calls the function real_roots() of the module sage.rings.
polynomial.real_roots. This function converts the polynomial into the Bern-
stein basis then uses Casteljau’s algorithm (for evaluating polynomials in Berstein
basis) and Descartes’ rule of signs (see §12.2.1) to isolate the roots.

When the parameter ring is QQbar or CIF and p.base_ring() is ZZ, QQ, AA or
the Gaussian numbers Q[

√
−1], the algorithm passes the computation to NumPy

and PARI/GP, whose results are then converted into the appropriate rings.
We refer the reader to the Polynomial.roots() documentation, for a com-

prehensive view of all situations covered by this method.
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Rate of Convergence. Consider a convergent sequence of numbers u and let
` be its limit. We say that the rate of convergence of the sequence u is linear if
there exists K ∈ (0, 1) such that

lim
n→∞

|un+1 − `|
|un − `|

= K.

The rate of convergence of the sequence u is said to be quadratic if there exists
K > 0 such that

lim
n→∞

|un+1 − `|
|un − `|2

= K.

Recall that Newton’s method constructs a recursive sequence u defined by
un+1 = ϕ(un), where ϕ is the function x 7→ x − f(x)/f ′(x). If f is twice
differentiable, Taylor’s formula for ϕ with x in a neighbourhood of the root α is

ϕ(x) = ϕ(α) + (x− α)ϕ′(α) + (x− α)2

2 ϕ′′(α) +Oα((x− α)3).

But ϕ(α) = α, ϕ′(α) = 0 and ϕ′′(α) = f ′′(α)/f ′(α). By substituting in the
previous formula and using the definition of the sequence u, we get

un+1 − α = (un − α)2

2
f ′′(α)
f ′(α) +O∞((un − α)3).

Therefore, when Newton’s method converges, the convergence rate of the sequence
is quadratic.

Acceleration of Convergence. Given a convergent sequence whose rate
of convergence is linear, it is possible to construct a sequence whose rate of
convergence is quadratic. The same technique, applied to Newton’s method, is
known as Steffensen’s method.

sage: def steffensen(sequence):
....: assert isinstance(sequence, GeneratorType)
....: values = deque(maxlen=3)
....: for i in range(3):
....: values.append(sequence.next())
....: yield values[i]
....: while True:
....: values.append(sequence.next())
....: u, v, w = values
....: yield u - (v - u)^2 / (w - 2 * v + u)

sage: g(x) = sin(x^2 - 2) * (x^2 - 2)
sage: sequence = newtongen(g, RR(0.7))
sage: accelseq = steffensen(newtongen(g, RR(0.7)))
sage: iterate(sequence, check=checkconv)
After 17 iterations: 1.41422192763287
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Solution of non-linear equations

Approximate roots of a polynomial Polynomial.roots()
Exact roots (not guaranteed to give all of them) Expression.roots()

Approximate real roots real_roots()
Approximate roots via Brent’s method Expression.find_root()

Table 12.1 – Summary of commands described in this chapter.

sage: iterate(accelseq, check=checkconv)
After 10 iterations: 1.41421041980166

Note that the rate of convergence is an asymptotic notion: it says nothing
about the error |un − `| for a given n.

sage: sequence = newtongen(f, RR(a))
sage: accelseq = steffensen(newtongen(f, RR(a)))
sage: iterate(sequence, check=checkconv)
After 6 iterations: 2.15846852566756
sage: iterate(accelseq, check=checkconv)
After 7 iterations: 2.15846852554764

The Method Expression.find_root(). We now consider the most general
situation: the computation of an approximate solution of the equation f(x) = 0.
In Sage, this is done using the method Expression.find_root().

The parameters of the method Expression.find_root() allow us to specify
an interval where the root should be found, the precision of the computation, or
the number of iterations. The parameter full_output gives access to additional
information about the computation, in particular the number of iterations and
the number of evaluations of the function.

sage: result = (f == 0).find_root(a, b, full_output=True)
sage: result[0], result[1].iterations
(2.1584685255476415, 9)

In fact, the method Expression.find_root() does not implement an algo-
rithm for finding the solutions of equations: the computation is delegated to
the module SciPy. The SciPy functionality used by Sage for solving equations
implements Brent’s method, which combines three of the methods we discussed
above: the bisection method, the secant method, and quadratic interpolation. The
two first approximate values are the endpoints of the interval where we are looking
for a solution of the equation. The next approximation is obtained by linear
interpolation, as in the secant method. In the following iterations, the function
is approximated by quadratic interpolation; the x-coordinate of the intersection
point of the interpolating curve and the x-axis is the new approximation, unless
this x-coordinate is sandwiched between the last two computed approximations,
in which case we continue with the bisection method.
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The SciPy library does not offer arbitrary precision computations (unless we
are satisfied to compute with integers); in fact, the source code of the method
Expression.find_root() starts by converting the bounds into double precision
numbers. On the other hand, all illustrations of solution methods we have given
in this chapter work in arbitrary precision, and even symbolically.

sage: a, b = pi/2, pi
sage: generator = newtongen(f, a)
sage: generator.next(); generator.next()
1/2*pi
1/2*pi - (e^(1/2*pi) - 10)*e^(-1/2*pi)

Exercise 46. Write a generator for Brent’s method that works with arbitrary
precision.
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Numerical Linear Algebra

We consider here the numerical side of linear algebra, the symbolic side being
described in Chapter 8. The linear algebra numerical analysis and methods are
discussed in [TBI97, Sch02]. The book of Golub and Van Loan [GVL12] is a
major reference in this domain.

Numerical linear algebra plays a key role in scientific computing including
the numerical solution of ordinary and partial differential equations, optimisation
problems, and signal processing problems.

The numerical resolution of several of these problems, even linear ones, relies
on algorithms made from nested loops; at the bottom of these loops, in most cases
a linear system is solved. Non-linear algebraic systems are often solved using
Newton’s method: here again, we have to deal with linear systems. Efficiency
and robustness of numerical linear algebra methods are thus crucial.

This chapter is split into three sections: in the first, we discuss the different
sources of inexactness of numerical linear algebra computations; the second section
(§13.2) discusses, without trying to be exhaustive, the more classical problems
(linear system resolution, eigenvalue computation, least squares); in the third
section (§13.3) we consider the case of sparse matrices. This last section is not
only a guide for the user, but also an introduction to methods which are part of
an active research domain.

13.1 Inexact Computations
We consider here classical linear algebra problems (linear system resolution,
eigenvalue and eigenvector computation, etc.) which are solved using floating-
point (i.e., inexact) computations. The different kinds of floating-point numbers
available in Sage are detailed in Chapter 12.
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Consider for example the system Ax = b to solve, where A is a matrix with
real coefficients. How big error δx do we get if we modify A by δA or b by δb?
We give some partial answers in this chapter.

13.1.1 Matrix Norms and Condition Number

Let A ∈ Rn×n (or Cn×n). We define on Rn (or Cn) a norm ‖x‖, for example
the norm ‖x‖∞ = max |xi| or ‖x‖1 =

∑n
i=1 |xi|, or even the Euclidean norm

‖x‖2 = (
∑n
i=1 |xi|2)1/2; then the quantity

‖A‖ = max
‖x‖=1

‖A x‖

defines a norm on the set of n × n matrices. We say it is an induced norm
with respect to the norm defined on Rn (or Cn). The condition number of a
nonsingular matrix A is defined by κ(A) = ‖A−1‖ · ‖A‖. The fundamental result
is that, if A is slightly modified by δA and b by δb, then the solution x of the
linear system Ax = b is modified by δx satisfying

‖δx‖
‖x‖

≤ κ(A)
1− κ(A)‖δA‖/‖A‖

(
‖δA‖
‖A‖

+ ‖δb‖
‖b‖

)
.

The norms ‖·‖∞ and ‖·‖1 are easy to compute: ‖A‖∞ = max1≤i≤n(
∑n
j=1 |aij |)

and ‖A‖1 = max1≤j≤n(
∑n
i=1 |aij |). On the contrary, the norm ‖·‖2 is more

difficult to compute, since ‖A‖2 =
√
ρ(AtA), the spectral radius ρ of a matrix A

being the largest modulus of its eigenvalues.
The Frobenius norm is defined by

‖A‖F =
( n∑
i=1

n∑
j=1
|aij |2

)1/2
.

We easily check that ‖A‖2F = trace(AtA). Contrary to the above norms, it is not
an induced norm.

Computing Matrix Norms in Sage. The matrices in Sage have a norm(p)
method. According to the value of the argument p it computes:

p = 1 : ‖A‖1, p = 2 : ‖A‖2,
p = Infinity : ‖A‖∞, p = 'frob' : ‖A‖F .

This method only works when the matrix coefficients can be converted into
complex floating-point numbers CDF. Please note that we write A.norm(Infinity)
but A.norm(’frob’). With A.norm() we obtain the default norm ‖A‖2.
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Errors and Condition Number: an Example, with Exact and Approx-
imate Computations. Let us use the capability of Sage to perform exact
computations when the coefficients are rational. We consider the Hilbert matrix

aij = 1/(i+ j − 1), i, j = 1, . . . , n.

The following program computes1 exactly the condition number of Hilbert matri-
ces, using the norm ‖·‖∞:

sage: def cond_hilbert(n):
....: A = matrix(QQ, [[1/(i+j-1) for j in [1..n]] for i in [1..n]])
....: return A.norm(Infinity) * (A -̂1).norm(Infinity)

Here are the results for a few n:
n condition number
2 27
4 28375
8 33872791095
16 5.06277e+22
32 1.35711e+47

We see the extremely fast growth of the condition number with respect to n.
We can prove that κ(A) ' e7n/2, which indeed grows very quickly. Still computing
in the rational field, we take x = [1, · · · , 1]t, y = Ax and we solve the system
Ãs = y where Ã is a slight modification of the matrix A; then we compare the
solution s and x = A−1y, thus measuring the error introduced by the modification
of A:

sage: def diff_hilbert(n):
....: x = vector(QQ,[1 for i in range(0,n)])
....: A = matrix(QQ, [[1/(i+j-1) for j in [1..n]] for i in [1..n]])
....: y = A*x
....: A[n-1,n-1] = (1/(2*n-1))*(1+1/(10^5)) # modifies the matrix
....: s = A\y
....: return max(abs(float(s[i]-x[i])) for i in range(0,n))

We obtain:
n error (diff_hilbert)
2 3.99984e-05
4 5.97610e-3
8 4.80536
16 67.9885
32 20034.3

The error very rapidly becomes too large with respect to xi = 1.
Let us now perform the same computation with floating-point coefficients. We

no longer modify the matrix A, but the floating-point arithmetic will perform
1In Sage, there exists a condition() method which returns the condition number for various

norms, but it exists for matrices with coefficients in RDF or CDF.
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small rounding errors (thus, the matrix A is actually not exactly the Hilbert
matrix any more). We perform again the above computation: the vector y being
first computed by rounding the exact values in RDF, we try to recover x by solving
the linear system Ax = y:

sage: def hilbert_diff(n):
....: j = var("j")
....: f = lambda i: sum(1/(i+j-1),j,1,n)
....: y = vector(RDF, [f(i+1) for i in range(0,n)])
....: A = matrix(RDF, [[1/(i+j-1) for i in [1..n]] for j in [1..n]])
....: x = A.solve_right(y)
....: return max(abs(x[i]-1.0) for i in range(0,n))

We also compute the condition number κ(A). According to n we obtain:

n error (hilbert_diff) κ(A) κ(A) /error
2 6.66134e-16 27.0 2.46716e-17
4 2.38586e-13 28375.0 8.40835e-18
8 3.45957e-07 3.38723e+10 1.02134e-17
16 73.9841 1.00834e+19 7.33725e-18
32 76.6078 1.22870e+19 1.91195e-18

We see for example that for n = 16, the error made on the solution (with the
infinite norm) is so large that all digits of the result are wrong (with the particular
choice of x we have made, xi = 1, the absolute and relative errors coincide).

Remarks. But why then compute with floating-point numbers? The perfor-
mance is not always the only reason since efficient linear algebra libraries with
rational arithmetic exist (for example Linbox, used by Sage); these libraries im-
plement algorithms which are slower than their floating-point equivalent, but
could be used for the resolution of moderate size linear systems. However, a
second source of inexactness comes from the fact that, in real applications, the
coefficients are usually not known (or measured) exactly. For example, solving
a non-linear system of equations using Newton’s method will naturally involve
inexact terms.

Ill-conditioned linear systems (if we except extreme cases like Hilbert matrix)
are more the rule than the exception: we often encounter (in physics, chemistry,
biology, etc.) systems of ordinary differential equations of the form du/dt = F (u)
where the Jacobian matrix DF (u), defined by partial derivatives ∂Fi(u)/∂uj ,
defines an ill-conditioned system. The eigenvalues span a very large range, which
yields a bad condition number of DF (u); this corresponds to the fact that the
system models phenomena of different time scales. Unfortunately, in practice, we
have to solve linear systems whose matrix is DF (u).

All the computations (matrix decomposition, computation of eigenelements,
convergence of iterative methods) depend on an appropriately defined condition
number. We therefore should keep this notion in mind as soon as we perform
linear algebra computations with floating-point numbers.
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13.2 Dense Matrices
13.2.1 Solving Linear Systems
Methods to Avoid. Using Cramer’s formula should (almost) always be avoided.
A recurrence reasoning shows that computing the determinant of an n×n matrix
using Cramer’s formula requires on the order of n! multiplications and additions.
To solve a system of size n, we have to compute n+ 1 determinants. Consider
n = 20:

sage: n = 20; cost = (n+1)*factorial(n); cost
51090942171709440000

we obtain the huge value of 51 090 942 171 709 440 000 multiplies. Assuming our
computer performs 3 · 109 multiplications per second, let us find how long the
computation would last:

sage: v = 3*10^9
sage: print("%3.3f" % float(cost/v/3600/24/365))
540.028

The computation would thus require about 540 years! Of course, we can use
Cramer’s formula to solve a 2 × 2 system, but not much beyond! All methods
used in practice have in common a polynomial cost in the dimension, i.e., of order
np, with p small (p = 3 in general).

Practical Methods. The solution of linear systems Ax = b is in most cases
based on a factorisation of the matrix A into a product of two matrices A = M1M2,
where M1 and M2 correspond to “easy” linear systems. To solve Ax = b, we thus
first solve M1y = b, then M2x = y.

For example M1 and M2 can be triangular matrices; in this case, once the
factorisation is performed, we have to solve two triangular linear systems. The
factorisation is much more expensive than solving the triangular linear systems
(for example O(n3) for the LU factorisation against O(n2) for the triangular
linear systems). When several systems with the same matrix have to be solved,
we should therefore perform the matrix decomposition only once. Of course, we
never invert a matrix to solve a linear system, since the inversion requires the
matrix factorisation, followed by solving n systems instead of only one.

13.2.2 Direct Resolution
The simplest way to solve a linear system is illustrated by

sage: A = matrix(RDF, [[-1,2],[3,4]])
sage: b = vector(RDF, [2,3])
sage: x = A\b; x
(-0.20000000000000018, 0.9000000000000001)

Within Sage, matrices have a method solve_right to solve linear systems (which
is based on the LU decomposition); this method is used above. We could also
write:
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sage: x = A.solve_right(b)

The x = A\b syntax is similar to what can be found in the Matlab, Octave and
Scilab systems.

13.2.3 The LU Decomposition

sage: A = matrix(RDF, [[-1,2],[3,4]])
sage: P, L, U = A.LU()

This method gives the L and U factors, and the permutation matrix P , such
that A = PLU (or equivalently, P tA = LU). The matrix L is lower triangular,
with unit diagonal, and U is upper triangular. The matrix P depends on the
pivot choices. For this, the strategy described in §8.2.1 consists, at step k, in
finding an invertible coefficient aik in column k, and to use it as pivot. But here,
this strategy must be improved, as we compute with floating-point numbers. To
demonstrate this, let us consider the following system:{

εx+ y = 1,
x+ y = 2.

If we use the coefficient ε of x in the first equation as pivot, we obtain y =
(1− 2ε)/(1− ε) and x = 1/(1− ε). Let us choose a small number for ε:

sage: eps = 1e-16
sage: y = (1-2*eps)/(1-eps)
sage: x = (1-y)/eps
sage: x, y
(1.11022302462516, 1.00000000000000)

The solution is very inaccurate! This is a consequence of the fact that, in the set
of floating-point numbers we use:

sage: 1. + eps == 1.
True

as RR(1).ulp()> ε (see §11.3.1). Now, we choose as pivot the coefficient of x in
the second equation (that is to say we permute the equations), we get:{

x+ y = 2,
(1− ε)y = 1− 2ε.

We obtain:

sage: y = (1-2*eps)/(1-eps)
sage: x = 2-y
sage: x, y
(1.00000000000000, 1.00000000000000)
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which is much more acceptable.
To obtain the PLU factorisation of A, the partial pivoting by column algorithm

is used: at the first step we choose in the first column the coefficient ai1 of
maximum absolute value and exchange row i and row 1; then, we fill the first
column (except the first element) with zeros using the Gaussian elimination
process. The application to the next steps is obvious.

Please note that Sage keeps in memory the factorisation ofA: the A.LU_valid()
command answers True if and only if the LU factorisation has already been
computed. Moreover, the A.solve_right(b) command will only compute the
factorisation if required, i.e., if it has not been computed before, or if the matrix
A has changed.

Example. Let us create a random matrix of size 1000, and two size-1000
vectors:

sage: A = random_matrix(RDF, 1000)
sage: b = vector(RDF, range(1000))
sage: c = vector(RDF, 2*range(500))

Let us first solve the system Ax = b:

sage: %time x = A.solve_right(b)
CPU times: user 132 ms, sys: 4 ms, total: 136 ms
Wall time: 140 ms

and now let us solve Ay = c:

sage: %time y = A.solve_right(c)
CPU times: user 68 ms, sys: 0 ns, total: 68 ms
Wall time: 72.8 ms

The second resolution is faster, because it used the LU factorisation computed in
the first one.

13.2.4 The Cholesky Decomposition

A symmetric matrix A is said to be positive definite if for every non-zero vector x,
xtAx > 0. For every symmetric positive definite matrix, there exists a lower
triangular matrix C such that A = CCt. This factorisation is called Cholesky
decomposition2. Within Sage, it is obtained by the cholesky() method. In
the following example, we construct a matrix A which is almost surely positive
definite:

sage: m = random_matrix(RDF, 10)
sage: A = transpose(m)*m
sage: C = A.cholesky()

2Cholesky (1875-1918) did his studies at the French École Polytechnique and was artillery
officer; his method was invented to solve geodesic problems.
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It should be noted that it is not possible to easily know (without performing
the Cholesky decomposition) whether a symmetric matrix is positive definite;
if we apply the cholesky method to a matrix that is not positive definite, the
decomposition will fail and an exception ValueError will be raised.

To solve a system Ax = b with the Cholesky decomposition, we proceed as
with the LU decomposition. Once the Cholesky decomposition is computed, we
call A.solve_right(b). Here again, the decomposition is not recomputed.

Why use the Cholesky decomposition instead of the LU decomposition to
solve linear systems with symmetric positive definite matrix? First, the memory
necessary to store the factors is halved, due to symmetry, but the Cholesky
method is especially interesting for its number of operations: indeed, for a size-n
matrix, the Cholesky factorisation costs n square roots, n(n − 1)/2 divisions,
(n3 − n)/6 additions and as many multiplications. As a comparison, the LU
factorisation costs n(n− 1)/2 divisions as well, but (n3 − n)/3 additions and as
many multiplications.

13.2.5 The QR Decomposition
Let A ∈ Rn×m, with n ≥ m. We want to find two matrices Q and R such
that A = QR where Q ∈ Rn×n is orthogonal (Qt · Q = I) and R ∈ Rn×m is
upper triangular. Of course, once such a decomposition is computed, we can use
it to solve linear systems if the matrix A is square and invertible. However, as
we will see, the QR decomposition is especially interesting to solve least squares
problems, and to compute eigenvalues. We should note that A is not necessarily
square. The QR decomposition always exists. Example:

sage: A = random_matrix(RDF,6,5)
sage: Q, R = A.QR()

Exercise 47 (Perturbing a linear system). Let A be an invertible square matrix,
and assume we have computed a decomposition of A (LU , QR, Cholesky, ...). Let
u and v be two vectors. We consider the matrix B = A + uvt, and we assume that
1 + vtA−1u 6= 0. How to cheaply solve the Bx = f system (i.e., without a factorisation
of B)?

Hint: We will use the Sherman and Morrison formula (that we will either prove or
assume):

(A+ uvt)−1 = A−1 − A−1uvtA−1

1 + vtA−1u
.

13.2.6 Singular Value Decomposition
Let A be an n×m matrix with real coefficients. Then two orthogonal matrices
U ∈ Rn×n and V ∈ Rm×m exist, such that

U tAV = Σ = diag(σ1, σ2, · · · , σp),

where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 (with p = min(m,n)). The numbers σ1, . . . , σp are
the singular values of A.
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The matrices U and V are orthogonal (U · U t = I and V · V t = I) and as a
consequence:

A = UΣV t.

Example (the computations are inexact due to rounding errors):

sage: A = matrix(RDF, [[1,3,2],[1,2,3],[0,5,2],[1,1,1]])
sage: U, Sig, V = A.SVD()
sage: A1 = A - U*Sig*transpose(V); A1
[ 2.220446049250313e-16 0.0 0.0]
[3.3306690738754696e-16 -4.440892098500626e-16 -4.440892098500626e-16]
[-9.298117831235686e-16 1.7763568394002505e-15 -4.440892098500626e-16]
[ 4.440892098500626e-16 -8.881784197001252e-16 -4.440892098500626e-16]

We can show that the singular values of a matrix A are the square roots of
the eigenvalues of AtA. It is easy to check that, for a square matrix of order n,
the Euclidean norm ‖A‖2 equals σ1 and that, if the matrix is non-singular, the
condition number of A in the Euclidean norm equals σ1/σn. The rank of A is
the integer r defined by:

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0.

13.2.7 Application to Least Squares
We want to solve the over-determined system Ax = b where A is a rectangular
matrix with real coefficients, having n rows and m columns with n > m. Clearly,
this system has no solution in general. We thus consider the minimisation problem
of the square Euclidean norm ‖·‖2 of the residue:

min
x
‖Ax− b‖22.

The rank of the matrix A might even be less than m.

Solving the Normal Equations. It is straightforward that the solution
satisfies:

AtAx = Atb.

Assuming A of full rank m, we can thus try to form the matrix AtA and solve
the system AtAx = Atb, for example by computing the Cholesky decomposition
of AtA. This is precisely the origin of Cholesky’s method. What is the condition
number of AtA? This is what will influence the accuracy of the results. The
singular values of AtA, which is of dimension m × m, are the squares of the
singular values of A; thus the condition number in Euclidean norm is σ2

1/σ
2
m, the

square of the condition number of A, which can be large. We thus prefer the
methods based either on the QR decomposition of A, or on its singular value
decomposition.

Nevertheless, this method is useful for small systems, with a condition number
which is not too bad. Here is the corresponding code:
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sage: A = matrix(RDF, [[1,3,2],[1,4,2],[0,5,2],[1,3,2]])
sage: b = vector(RDF, [1,2,3,4])
sage: Z = transpose(A)*A
sage: C = Z.cholesky()
sage: R = transpose(A)*b
sage: Z.solve_right(R)
(-1.5000000000000135, -0.5000000000000085, 2.7500000000000213)

We should note that Cholesky’s decomposition is cached, and is used by
Z.solve_right(R), without being recomputed.

With the QR decomposition. Assume A of full rank3; we consider the QR
decomposition of A. Then

‖Ax− b‖22 = ‖QRx− b‖22 = ‖Rx−Qtb‖22.

We have: R =
[
R1
0

]
where R1 is m ×m upper triangular and Qtb =

[
c
d

]
with c of size m. Thus ‖Ax − b‖22 = ‖R1x − c‖22 + ‖d‖22, and the minimum is
obtained by solving the triangular system R1x = c:

sage: A = matrix(RDF, [[1,3,2],[1,4,2],[0,5,2],[1,3,2]])
sage: b = vector(RDF, [1,2,3,4])
sage: Q, R = A.QR()
sage: R1 = R[0:3,0:3]
sage: b1 = transpose(Q)*b
sage: c = b1[0:3]
sage: R1.solve_right(c)
(-1.499999999999999, -0.49999999999999867, 2.749999999999997)

Let us compute the condition number of AtA in infinite norm:
sage: Z = A.transpose()*A
sage: Z.norm(Infinity)*(Z -̂1).norm(Infinity)
1992.3750000000168

The QR method and the method of normal equations give results that agree to
within the roundoff level times κ(AtA).

With the Singular Value Decomposition. The singular value decomposition
A = UΣV t also allows us to compute the solution; moreover, we can use it when
A is not of full rank. If A is not the zero matrix, Σ has 0 < r ≤ m positive
coefficients σi (assumed in decreasing order). We then have:

‖Ax− b‖22 = ‖U tAV V tx− U tb‖22.

Writing λ = V tx, and ui for the columns of U , we have:

‖Ax− b‖22 =
p∑
i=1

(σiλi − utib)2 +
m∑

i=p+1
(utib)2.

3We can avoid that condition with a QR method with pivots.
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The minimum is thus attained by taking λi = (utib)/σi for 1 ≤ i ≤ p if λi 6= 0,
and λi = 0 otherwise. We finally obtain the solution x = V λ.

Here is the corresponding Sage program:
sage: A = matrix(RDF, [[1,3,2],[1,3,2],[0,5,2],[1,3,2]])
sage: B = vector(RDF, [1,2,3,4])
sage: U, Sig, V = A.SVD()
sage: m = A.ncols()
sage: x = vector(RDF, [0]*m)
sage: lamb = vector(RDF, [0]*m)
sage: for i in range(0,m):
....: s = Sig[i,i]
....: if s!=0.0:
....: lamb[i]=U.column(i)*B/s
sage: x = V*lamb; x
(0.2370370370370367, 0.4518518518518521, 0.3703703703703702)

Please note that we have chosen here a matrix of rank 2 (we can check with
the A.rank() command) and thus not of full rank; there are several solutions to
the least squares problem, and the above mathematical analysis shows that x is
the solution with the smallest Euclidean norm.

Let us look at the singular values:
sage: m = 3; [ Sig[i,i] for i in range(0,m) ]
[8.309316833256451, 1.3983038884881154, 0.0]

The rank of the matrix A being 2, the third singular value is necessarily 0.
Example. Among the marvelous applications of the singular value decompo-

sition (SVD), here is a problem (known as the orthogonal Procrustes problem)
which is hard to solve by another method: let A and B ∈ Rn×m be the results of
an experiment repeated twice. We wonder if B can be twisted to A, i.e., if there
exists an orthogonal matrix Q such that A = BQ. Naturally, the measures A
and B contain some noise, whence the problem has no solution in general. We
therefore consider the corresponding least squares problem; we are looking for
the orthogonal matrix Q which minimises the square of the Frobenius norm:

‖A−BQ‖2F .

We remember that ‖A‖2F = trace(AtA). Then

‖A−BQ‖2F = trace(AtA) + trace(BtB)− 2 trace(QtBtA) ≥ 0,

and we have to maximise trace(QtBtA). We then compute the SVD of BtA: we
have U t(BtA)V = Σ. Let us denote by σi the singular values, and Z = V tQtU .
This matrix is orthogonal, and thus all its coefficients are less or equal to 1 in
absolute value. Then:

trace(QtBtA) = trace(QtUΣV t) = trace(ZΣ) =
m∑
i=1

Ziiσi ≤
m∑
i=1

σi,
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and the maximum is obtained for Q = UV t.

sage: A = matrix(RDF, [[1,2],[3,4],[5,6],[7,8]])

B is obtained by adding a random noise to A, and then applying a rotation R:

sage: th = 0.7
sage: R = matrix(RDF, [[cos(th),sin(th)],[-sin(th),cos(th)]])
sage: B = (A + 0.1*random_matrix(RDF,4,2)) * transpose(R)

sage: C = transpose(B)*A
sage: U, Sigma, V = C.SVD()
sage: Q = U*transpose(V)

The random noise is small, and Q is close to R as expected:

sage: Q
[ 0.7612151656410958 0.6484993998439783]
[-0.6484993998439782 0.7612151656410955]
sage: R
[0.7648421872844885 0.644217687237691]
[-0.644217687237691 0.7648421872844885]

Exercise 48 (Square root of a symmetric semi-definite positive matrix). Let A be a
symmetric semi-definite positive matrix (i.e., which satisfies xtAx ≥ 0 for any vector x).
Show that we can compute a matrix X, also symmetric semi-definite positive, such that
X2 = A.

13.2.8 Eigenvalues, Eigenvectors

So far, we have used some direct methods (LU , QR, or Cholesky decompositions),
which give a solution in a finite number of operations (the four basic arithmetic
operations, and the square root for the Cholesky decomposition). This cannot
hold for the computation of eigenvalues: indeed (cf. page 294), we can associate
to every polynomial a matrix whose eigenvalues are the roots of the polynomial,
and we know there is no explicit formula for the roots of a polynomial of degree
5 or more, a formula that a direct method would yield. Also, constructing the
characteristic polynomial to compute its roots would be extremely costly (the
Faddeev-Le Verrier algorithm allows us to compute the characteristic polynomial
of a size-n matrix in O(n4) operations, which is still considered too expensive).
The numerical methods used to compute eigenvalues and eigenvectors are all
iterative. Recall also that the singular values of a matrix A are the square roots
of the eigenvalues of AtA: consequently there is no direct method to compute the
singular value decomposition.

We will thus build sequences converging towards the eigenvalues (and eigen-
vectors), and stop the iterations when close enough to the solution4.

4In the examples below, we choose a fixed number of iterations, for simplicity.
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The Power Method. Let A ∈ Cn×n. We choose any norm ‖·‖ on Cn. Starting
from x0, we consider the vector sequence xk defined by:

xk+1 = Axk
‖Axk‖

.

If the eigenvalues satisfy |λ1| > |λ2| > · · · > |λn|, then the sequence xk
converges towards an eigenvector associated to the dominant eigenvalue λ1.
Moreover, the sequence νk = x∗k+1xk converges towards |λ1|. (The assumption
that the eigenvalues have different absolute values can be relaxed.)

sage: n = 10
sage: A = random_matrix(RDF,n)
sage: A = A*transpose(A) + diagonal_matrix([-RDF(i) for i in [1..n]])
sage: # A satisfies (almost surely) the hypotheses.
sage: X = vector(RDF, [1 for i in range(0,n)])
sage: lam_old = 0
sage: for i in range(0,100):
....: Z = A*X
....: X = Z/Z.norm()
....: lam = X*A*X
....: s = abs(lam - lam_old)
....: print("{i} s={s} lambda={lam}".format(i=i, s=s, lam=lam))
....: lam_old = lam
....: if s < 1.e-10:
....: break
0 s=2.0567754429 lambda=-2.0567754429
1 s=1.25099951088 lambda=-3.30777495378
2 s=1.09226722941 lambda=-4.40004218319
3 s=0.908251200751 lambda=-5.30829338394
4 s=0.721759096603 lambda=-6.03005248054
...
96 s=1.69451061005e-06 lambda=-8.01819929979
97 s=1.54755954895e-06 lambda=-8.01820084735
98 s=1.41335122805e-06 lambda=-8.0182022607
99 s=1.29078087419e-06 lambda=-8.01820355148

Now, let us compute:

sage: A.eigenvalues()
[6.587670892594506,
2.693595372897774,
-8.018217143995244,
-7.662621462625094,
-6.107162561729528,
1.2180921545902392,
0.11456793007905457,
-0.30200998716052146,
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-2.3272481190401657,
-3.52779132563669]

We have indeed determined the dominant eigenvalue.
This method might look of little interest, but it will appear again for sparse

matrices. It also introduces what follows, which is very useful.

The Inverse Power Method. We assume a known approximation µ of an
eigenvalue λj (with µ, λj ∈ C). How can we determine an eigenvector associated
to λj?

We assume that ∀k 6= j, 0 < |µ − λj | < |µ − λk|, and thus, λj is a simple
eigenvalue. We then consider (A− µI)−1, whose largest eigenvalue is (λj − µ)−1,
and we apply the power method to this matrix.

Let us take for example:

sage: A = matrix(RDF, [[1,3,2],[1,2,3],[0,5,2]])

By calling the method A.eigenvalues(), we find the eigenvalues (rounded to
5 significant digits) 6.3929, 0.56052, -1.9535. We will search the eigenvector
associated to the second eigenvalue, starting from an approximation:

sage: A = matrix(RDF,[[1,3,2],[1,2,3],[0,5,2]])
sage: mu = 0.56
sage: AT = A - mu*identity_matrix(RDF,3)
sage: X = vector(RDF,[1 for i in range(0,A.nrows())])
sage: lam_old = 0
sage: for i in range(1,1000):
....: Z = AT.solve_right(X)
....: X = Z/Z.norm()
....: lam = X.dot_product(A*X)
....: s = abs(lam - lam_old)
....: print("{i} s={s} lambda={lam}".format(i=i, s=s, lam=lam))
....: lam_old = lam
....: if s<1.e-10:
....: break
1 s=0.56423627407 lambda=0.56423627407
2 s=0.00371649959176 lambda=0.560519774478
3 s=2.9833340176e-07 lambda=0.560519476145
4 s=3.30288019157e-11 lambda=0.560519476112
sage: X
(0.9276845629439007, 0.10329475725387141, -0.3587917847435305)

Let us verify that we have calculated an approximation of the selected eigenvalue
and of an associated eigenvector:

sage: A*X-lam*X
(2.886579864025407e-15, 1.672273430841642e-15, 8.326672684688674e-15)

Several remarks can be made:
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• we do not compute the inverse of the matrix A − µI, but we use its LU
factorisation, which is computed only once (by the first solve_right call);

• we use the iterations to improve an estimation of the selected eigenvalue;

• the convergence is very fast; we can indeed show that (modulo the above
hypotheses, and the choice of an initial vector non-orthogonal to the eigen-
vector qj associated to λj), we have, for the iterates x(i) and λ(i):

‖x(i) − qj‖ = O

(∣∣∣∣ µ− λjµ− λK

∣∣∣∣i)
and

‖λ(i) − λj‖ = O

(∣∣∣∣ µ− λjµ− λK

∣∣∣∣2i),
where λK is the second closest eigenvalue to µ;

• the condition number of A− µI (bounded from below by the ratio between
the largest and smallest eigenvalues of A− µI) is large thus bad; however,
we can show that errors are after all not that important!

The QR Algorithm. Let A be a non-singular square matrix. We consider the
sequence A0 = A, A1, A2, . . ., Ak, Ak+1, . . . In the raw form of the QR algorithm,
going from Ak to Ak+1 is done as follows:

1. we compute the QR decomposition of Ak: Ak = QkRk,

2. we compute Ak+1 = RkQk.

Let us program this method with A a symmetric real matrix:

sage: m = matrix(RDF, [[1,2,3,4],[1,0,2,6],[1,8,4,-2],[1,5,-10,-20]])
sage: Aref = transpose(m)*m
sage: A = copy(Aref)
sage: for i in range(0,20):
....: Q, R = A.QR()
....: A = R*Q
....: print(A.str(lambda x: RR(x).str(digits=8)))
[ 347.58031 -222.89331 -108.24117 -0.067928252]
[ -222.89331 243.51949 140.96827 0.081743964]
[ -108.24117 140.96827 90.867499 -0.0017822044]
[ -0.067928252 0.081743964 -0.0017822044 0.032699348]
...
[ 585.03056 -3.2281469e-13 -6.8752767e-14 -9.9357605e-14]
[-3.0404094e-13 92.914265 -2.5444701e-14 -3.3835458e-15]
[-1.5340786e-39 7.0477800e-25 4.0229095 2.7461301e-14]
[ 1.1581440e-82 -4.1761905e-68 6.1677425e-42 0.032266909]
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We observe a convergence towards an almost diagonal matrix. The diagonal
coefficients are approximations to the eigenvalues of A. Let us check:

sage: Aref.eigenvalues()
[585.0305586200212, 92.91426499150643, 0.03226690899408103,

4.022909479477674]

We can prove the convergence if the matrix is Hermitian positive definite. If
we have a non-symmetric matrix, we should compute in C, the eigenvalues being
a priori complex, and, if the method converges, the lower triangular part of Ak
tends to zero, while the diagonal tends to the eigenvalues of A.

The QR method requires several improvements to become efficient, in particu-
lar because the successive QR decompositions are expensive; among the common
refinements, in general we first reduce the matrix A to a simpler form (Hessen-
berg’s form: upper triangular plus the first subdiagonal), which makes the QR
decompositions much cheaper; then, to speed-up convergence, we apply cleverly
chosen translations A := A+ σI (see for example [GVL12]). This is precisely the
method used by Sage for dense matrices CDF or RDF.

In Practice. The above programs are mainly given as pedagogical examples;
in practice, we will use the methods provided by Sage, which, whenever possible,
call optimised routines from the Lapack library. The interface allows either to get
only the eigenvalues, or both the eigenvalues and the corresponding eigenvectors:

sage: A = matrix(RDF, [[1,3,2],[1,2,3],[0,5,2]])
sage: eigen_vals, eigen_vects = A.eigenmatrix_right()
sage: eigen_vals
[ 6.39294791648918 0.0 0.0]
[ 0.0 0.560519476111939 0.0]
[ 0.0 0.0 -1.9534673926011215]
sage: eigen_vects
[ 0.5424840601106511 0.9276845629439008 0.09834254667424457]
[ 0.5544692861094349 0.10329475725386986 -0.617227053099068]
[ 0.6310902116870117 -0.3587917847435306 0.780614827194734]

This example computes the diagonal matrix with eigenvalues, and the eigenvector
matrix (whose columns correspond to eigenvectors).

Example (Computing the roots of a polynomial). Given a monic polynomial
(with real or complex coefficients) p(x) = xn+an−1x

n−1 + · · ·+a1x+a0, it is easy
to check that the eigenvalues of the companion matrix M , defined by Mi+1,i = 1
and Mi,n−1 = −ai, are the roots of p (see §8.2.3), which thus gives a method to
approximate these roots:

sage: def pol2companion(p):
....: n = len(p)
....: m = matrix(RDF,n)
....: for i in range(1,n):
....: m[i,i-1]=1
....: m.set_column(n-1,-p)
....: return m
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sage: q = vector(RDF,[1,-1,2,3,5,-1,10,11])
sage: comp = pol2companion(q); comp
[ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0]
[ 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0]
[ 0.0 1.0 0.0 0.0 0.0 0.0 0.0 -2.0]
[ 0.0 0.0 1.0 0.0 0.0 0.0 0.0 -3.0]
[ 0.0 0.0 0.0 1.0 0.0 0.0 0.0 -5.0]
[ 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0]
[ 0.0 0.0 0.0 0.0 0.0 1.0 0.0 -10.0]
[ 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -11.0]
sage: roots = comp.eigenvalues(); roots
[0.3475215101190289 + 0.5665505533984981*I, 0.3475215101190289 -

0.5665505533984981*I,
0.34502377696179265 + 0.43990870238588275*I, 0.34502377696179265 -

0.43990870238588275*I,
-0.5172576143252197 + 0.5129582067889322*I, -0.5172576143252197 -

0.5129582067889322*I,
-1.3669971645459291, -9.983578180965276]

In this example, the polynomial is represented by the list q of its coefficients,
from 0 to n − 1. The polynomial x2 − 3x + 2 would thus be represented by
q=[2,-3].

13.2.9 Polynomial Curve Fitting: the Devil is Back
Continuous Version. We would like to approximate the function f(x) by a
polynomial P (x) of degree ≤ n, on the interval [α, β]. We formulate the least
squares problem:

min
a0,...,an∈R

J(a0, . . . , an) =
∫ β

α

(f(x)−
n∑
i=0

aix
i)2 dx.

By differentiating J(a0, . . . , an) with respect to the coefficients ai, we find that
a0, . . . , an are solutions of the linear system Ma = F where Mi,j =

∫ β
α
xixj dx

and Fj =
∫ β
α
xjf(x) dx. We immediately see by looking at the case α = 0, β = 1

that M is a Hilbert matrix! However a remedy exists: it suffices to use a basis of
orthogonal polynomials (for example, for α = −1 and β = 1 we obtain Legendre
polynomials); then M becomes the identity matrix.

Discrete Version. We consider m observations y1, . . . , ym of a phenomenon
at points x1, . . . , xm. We want to fit a polynomial

∑n−1
i=0 aix

i of degree (at most)
n− 1 among those values, with n ≤ m. We thus minimise the functional:

J(a0, . . . , an−1) =
m∑
j=1

(
n−1∑
i=0

aix
i
j − yj)2.
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Written like this, the problem will produce a matrix close to a Hilbert matrix
and the system will be hard to solve accurately. Yet, we notice that 〈P,Q〉 =∑m
j=1 P (xj)·Q(xj) defines a scalar product on polynomials of degree at most n−1.

We can thus first construct n polynomials of increasing degrees, orthonormal for
this scalar product, and then diagonalise the linear system. Remembering5 that
the Gram-Schmidt process reduces to a 3-term recurrence for the computation of
orthogonal polynomials, we are looking for the polynomial Pn+1(x) under the form
Pn+1(x) = xPn(x)− αnPn−1(x)− βnPn−2(x): the orthopoly procedure below
performs this computation (we represent here polynomials by the list of their
coefficients: for example [1,-2,3] corresponds to the polynomial 1− 2x+ 3x2).

Horner’s scheme to evaluate a polynomial yields the following program:

sage: def eval(P,x):
....: if len(P) == 0:
....: return 0
....: else:
....: return P[0]+x*eval(P[1:],x)

We can then encode the scalar product of two polynomials:

sage: def pscal(P,Q,lx):
....: return float(sum(eval(P,s)*eval(Q,s) for s in lx))

and the operation P ← P + aQ for two polynomials P and Q:

sage: def padd(P,a,Q):
....: for i in range(0,len(Q)):
....: P[i] += a*Q[i]

A more careful program should raise an exception when wrongly used; in our
case, we use the following exception when n > m:

sage: class BadParamsforOrthop(Exception):
....: def __init__(self, degreeplusone, npoints):
....: self.deg = degreeplusone - 1
....: self.np = npoints
....: def __str__(self):
....: return "degree: " + str(self.deg) + \
....: " nb. points: " + repr(self.np)

The following procedure computes the n orthogonal polynomials:

sage: def orthopoly(n,x):
....: if n > len(x):
....: raise BadParamsforOrthop(n, len(x))
....: orth = [[1./sqrt(float(len(x)))]]
....: for p in range(1,n):
....: nextp = copy(orth[p-1])
....: nextp.insert(0,0)

5Proving it is not very difficult!
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Figure 13.1 – Dotted line: naive fitting. Continuous line: orthogonal polynomials fitting.

....: s = []

....: for i in range(p-1,max(p-3,-1),-1):

....: s.append(pscal(nextp, orth[i], x))

....: j = 0

....: for i in range(p-1,max(p-3,-1),-1):

....: padd(nextp, -s[j], orth[i])

....: j += 1

....: norm = sqrt(pscal(nextp, nextp, x))

....: nextpn = [nextp[i]/norm for i in range(len(nextp))]

....: orth.append(nextpn)

....: return orth

Once the orthogonal polynomials P0(x), . . . , Pn−1(x) are computed, the solution
is given by P (x) =

∑n−1
i=0 γiPi(x), with:

γi =
m∑
j=1

Pi(xj)yj ,

which can be clearly expressed in turn in the monomial basis 1, x, . . . , xn−1.
Example (n = 15):

sage: L = 40
sage: X = [100*float(i)/L for i in range(40)]
sage: Y = [float(1/(1+25*X[i]^2)+0.25*random()) for i in range(40)]
sage: n = 15; orth = orthopoly(n, X)

Let us compute the solution coefficients on the basis of orthogonal polynomials:
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sage: coeff = [sum(Y[j]*eval(orth[i],X[j]) for j in
....: range(0,len(X))) for i in range(0,n)]

We can then translate this result into the monomial basis 1, x, . . . , xn−1, for
example to draw the graph:

sage: polmin = [0 for i in range(0,n)]
sage: for i in range(0,n):
....: padd(polmin, coeff[i], orth[i])
sage: p = lambda x: eval(polmin, x)
sage: plot(p(x), x, 0, X[len(X)-1])

We do not detail here the computation of the naive fitting on the monomial basis
xi, and its graphical representation. We obtain Figure 13.1. The two curves,
which correspond to the fitting with a basis of orthogonal polynomials and to the
monomial basis, are close; however, if we compute their residue (the value of the
functional J) we find 0.1202 for the orthogonal polynomial basis, and 0.1363 for
the naive fitting.

13.2.10 Implementation and Efficiency
The computations with matrices having RDF coefficients are performed with the
processor floating-point unit, those having RR coefficients with the GNU MPFR
library. Moreover, in the first case, Sage uses NumPy/SciPy, which in turn calls
the Lapack library (written in Fortran), this library using the BLAS6, which are
optimised for each processor. We then get for the product of two matrices of size
1000:

sage: a = random_matrix(RR, 1000)
sage: b = random_matrix(RR, 1000)
sage: %time _ = a*b
CPU times: user 7min 50s, sys: 508 ms, total: 7min 50s
Wall time: 7min 51s

sage: c = random_matrix(RDF, 1000)
sage: d = random_matrix(RDF, 1000)
sage: %time _ = c*d
CPU times: user 40 ms, sys: 4 ms, total: 44 ms
Wall time: 45.2 ms

whence a ratio of more than 10000 between the multiplication times! (Recall that
we compute with the same precision in both cases).

We can also notice the efficiency of computations with matrices having RDF
coefficients: since the product of two square matrices of size n costs n3 multiplica-
tions (and as many additions), we perform here 109 additions and multiplications
in 0.045 second; this is about 44 · 109 floating-point operations per second, which
corresponds to 44 gigaflops. The processor clock having a frequency of 3.3 Ghz,
we thus perform more than one operation by clock cycle: this is possible thanks

6Basic Linear Algebra Subroutines (matrix-vector products, matrix-matrix products, etc.).
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to the almost direct call to the BLAS corresponding routine (which uses the
different possibilities to compute in parallel in modern processors cores). There
exists an algorithm of cost lower than n3 to compute the product of two matrices,
namely Strassen’s algorithm. It is not often used in practice for floating-point
computations, as it is more sensitive to roundoff errors as the naive method[Hig93].

13.3 Sparse Matrices
Sparse matrices arise quite often in scientific computing: the sparsity is indeed a
wanted property which enables us to solve problems of large size, out of reach
with dense matrices.

An approximate definition: we will say that a sequence Mn of matrices, with
Mn of size n, is a family of sparse matrices if the number of non-zero coefficients
of Mn is O(n).

Clearly, those matrices are encoded in the computer using data structures
where only the non-zero elements are stored. By taking into account the sparsity
of the matrices, we want of course to save memory to be able to represent large
matrices, but also heavily reduce the computation cost.

13.3.1 Where do Sparse Systems Come From?
Boundary Problems. The most common source of sparse linear systems is
the discretisation of partial derivative equations. Let us consider for example the
Poisson equation (stationary heat equation):

−∆u = f

where u = u(x, y), f = f(x, y),

∆u := ∂2u

∂x2 + ∂2u

∂y2 .

The equation is considered in the square [0, 1]2, with boundary conditions u = 0
on the square border. The one-dimensional analogue is the problem

− ∂2u

∂x2 = f, (13.1)

with u(0) = u(1) = 0.
To approximate the solution of this equation, one of the simplest methods

consists in using the finite difference method: we divide the range [0, 1] into a finite
number N of intervals of constant width h. We denote by ui the approximation
of u at the point xi = ih. We approximate the derivative of u by (ui+1 − ui)/h,
and its second derivative by

(ui+1 − ui)/h− (ui − ui−1)/h
h

= ui+1 − 2ui + ui−1

h2 .
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We immediately see that the values u0, . . . , uN , approximating u at points ih,
satisfy a linear system having only 3 non-zero terms per row (and whose matrix
is symmetric positive definite).

In dimension 2, we can stick a grid of step h on the unit square, and we obtain
a pentadiagonal system (with 4/h2 on the diagonal, and −1/h2 on the first two
subdiagonals and on the first two superdiagonals). In dimension 3, if we proceed
similarly in a cube, we obtain a system where each row has 7 non-zero coefficients.
We therefore indeed get very sparse matrices.

Random Walk on a Large Sparse Graph. We consider a graph where each
vertex is linked to a small number of vertices (small with respect to the total
number of vertices). For example, we can figure out a graph where the vertices
are the internet pages: each page only links to a small number of other pages
(which defines the graph edges), but it is clearly a huge graph. A random walk
on the graph is defined by a stochastic matrix, i.e., a matrix whose coefficients
are reals between 0 and 1, with the sum of coefficients being 1 on each line.
We can show that such a matrix A has a dominant eigenvalue equal to 1. The
stationary distribution of the random walk is the (left) eigenvector x associated
to the dominant eigenvalue, i.e., the vector x satisfying xA = x. One of the most
dramatic applications is the Pagerank algorithm from Google, where the vector x
is used to balance the search results.

13.3.2 Sparse Matrices in Sage
Sage gives us the chance to work with sparse matrices, by adding sparse = True
when creating the matrix. It corresponds to a representation as a dictionary
(§3.3.9). In addition, computations on large sparse matrices with coefficients in
RDF or CDF are performed by Sage using the SciPy library, which offers its own
classes of sparse matrices. In the current situation, there is no interface between
the sparse matrices of Sage and those of SciPy. We thus have to directly use the
SciPy objects.

The available SciPy classes for sparse matrices are:

• a list-of-lists structure (different however from that used by Sage), which is
quite handy to create and modify matrices, the lil_matrix class;

• some immutable structures, which store only non-zero coefficients, and
which are standard formats in sparse linear algebra (csr and csv formats).

13.3.3 Solving Linear Systems
For systems of moderate size, we can use a direct method, based on the LU
decomposition. We can easily convince ourselves that, in the LU decomposition
of a sparse matrix A, the L and U factors usually contain more non-zero terms
altogether than A. It is necessary to renumber the unknowns to limit the memory
used, as in the SuperLU library used by Sage in a transparent manner:

sage: from scipy.sparse.linalg.dsolve import *
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sage: from scipy.sparse import lil_matrix
sage: from numpy import array
sage: n = 200
sage: n2 = n*n
sage: A = lil_matrix((n2, n2))
sage: h2 = 1./float((n+1)^2)
sage: for i in range(0,n2):
....: A[i,i]=4*h2+1.
....: if i+1<n2: A[i,int(i+1)]=-h2
....: if i>0: A[i,int(i-1)]=-h2
....: if i+n<n2: A[i,int(i+n)]=-h2
....: if i-n>=0: A[i,int(i-n)]=-h2
sage: Acsc = A.tocsc()
sage: b = array([1 for i in range(0,n2)])
sage: solve = factorized(Acsc) # LU factorisation
sage: S = solve(b) # resolution

Once we have created the matrix as a lil_matrix (warning, this format requires
indices of type int from Python), we have to convert it to the csc format. The
above program is not very efficient: the construction of the lil_matrix is slow,
the lil_matrix data structure being quite inefficient. However, the conversion to
a csc matrix and its factorisation are fast; the following resolution is even faster.

Iterative Methods. The main principle of these methods is to build a sequence
converging towards the solution of the Ax = b system. Modern iterative methods
rely on the Krylov space Kn, the vector space spanned by {b, Ab, . . . , Anb}.
Among the most popular methods, let us mention:

• the conjugate gradient method: it can only be used for systems whose
matrix A is symmetric positive definite. In this case ‖x‖A =

√
xtAx is a

norm, and the iterate xn is such that it minimises the error ‖x − xn‖A
between the solution x and xn for xn ∈ Kn (some formulas exist which are
easy to program, cf. for example [GVL12]);

• the generalised minimal residual method (GMRES): it is designed for non-
symmetric linear systems. At the n-th iteration, the Euclidean residual
norm ‖Axn − b‖2 is minimised for xn ∈ Kn. We notice that it is a least
squares problem.

In practice, these methods are only efficient with preconditioning: instead of
solving Ax = b, we solve MAx = Mb where M is a matrix such that MA has a
better condition number than A. The study and discovery of efficient precondi-
tioners is an active branch of numerical analysis, with fruitful developments. As
an example, here is the resolution of the system studied above by the conjugate
gradient method, where the preconditioner M is the inverse of the diagonal of A.
It is a simple but not very efficient preconditioner:

sage: b = array([1 for i in range(0,n2)])
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Most useful commands (dense matrices)

Solve a linear system x = A\b
LU decomposition P, L, U = A.LU()

Cholesky decomposition C = A.cholesky()
QR decomposition Q, R = A.QR()

Singular value decomposition U, Sig, V = A.SVD()
Eigenvalues and eigenvectors Val, Vect = A.eigenmatrix_right()

Table 13.1 – Summary.

sage: m = lil_matrix((n2, n2))
sage: for i in range(0,n2):
....: m[i,i] = 1./A[i,i]
sage: msc = m.tocsc()
sage: from scipy.sparse.linalg import cg
sage: x = cg(A, b, M = msc, tol=1.e-8)

13.3.4 Eigenvalues, Eigenvectors
The Power Method. The power method is particularly well suited for huge
sparse matrices; indeed, to implement the algorithm, it is enough to know how to
perform matrix-vector and scalar products. As an example, let us come back to
random walks on a sparse graph, and let us compute the stationary distribution
using the power method:

sage: from scipy import sparse
sage: from numpy.linalg import *
sage: from numpy import array
sage: from numpy.random import rand
sage: def power(A,x): # power iteration
....: for i in range(0,1000):
....: y = A*x
....: z = y/norm(y)
....: lam = sum(x*y)
....: s = norm(x-z)
....: print("{i} s={s} lambda={lam}".format(i=i, s=s, lam=lam))
....: if s < 1e-3:
....: break
....: x = z
....: return x
sage: n = 1000
sage: m = 5
sage: # build a stochastic matrix of size n
sage: # with m non-zero coefficients per row
sage: A1 = sparse.lil_matrix((n, n))
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sage: for i in range(0,n):
....: for j in range(0,m):
....: l = int(n*rand())
....: A1[l,i] = rand()
sage: for i in range(0,n):
....: s = sum(A1[i,0:n])
....: A1[i,0:n] /= s
sage: At = A1.transpose().tocsc()
sage: x = array([rand() for i in range(0,n)])
sage: # compute the dominant eigenvalue
sage: # and the associated eigenvector
sage: y = power(At, x)
0 s=17.0241218112 lambda=235.567796432
1 s=0.39337173784 lambda=0.908668201953
2 s=0.230865716856 lambda=0.967356896036
3 s=0.134156683993 lambda=0.986660315554
4 s=0.0789423487458 lambda=0.995424635219
...

When running this example, we might play with measuring the time spent in its
different parts, and we will observe that almost all the time is spent in constructing
the matrix; computing the transpose is not very expensive; the power iterations
themselves take negligible time (about 2% of the total time on the test computer).
The representation using list of large matrices is not very efficient, and this kind
of problem should be rather solved with compiled languages and appropriate data
structures.

13.3.5 More Thoughts on Solving Large Non-Linear
Systems

The power method and the methods using the Krylov space share a key property:
they only require the computation of matrix-vector products. We do not even
need to know the matrix, we only need to know the action of the matrix on a
vector. This is why these methods are also called “black box” methods. It is thus
possible to perform some computations in cases where the matrix is not explicitly
known, or when we are unable to compute it. The SciPy methods allow in fact
linear operators as arguments. We invite the reader to consider the following
application, and maybe implement it.

Let F : Rn → Rn. We want to solve F (x) = 0. We consider Newton’s method,
where we compute iterates xn+1 = xn − J(xn)−1 · F (xn), starting from x0. The
Jacobian matrix J(xn) is the matrix of partial derivatives of F at xn. In practice,
one will successively solve J(xn)yn = F (xn), then compute xn+1 = xn − yn. We
thus have to solve a linear system. If F is somewhat hard to compute, then its
partial derivatives are in general still harder to compute and to program, and
this computation might be almost impossible. We therefore bring automatic
differentiation to the rescue: if ej is the vector from Rn with all its components 0
except the j-th one equal to 1, then (F (x + hej) − F (x))/h yields a (good)
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approximation of the j-th column of the Jacobian matrix for small h. We thus have
to perform n+ 1 evaluations of F to obtain an approximation of J , which is quite
expensive if n is large. How about applying an iterative method like Krylov to solve
the system J(xn)yn = F (xn)? We notice that J(xn)V ' (F (xn+hV )−F (xn))/h
for h small enough, which avoids the computation of the whole matrix. Within
SciPy, it is sufficient to define a “linear” operator as being the application
V → (F (xn + hV )− F (xn))/h. This kind of method is quite often used to solve
large non-linear systems. The “matrix” being non-symmetric, we will use for
example the GMRES method.



14
Numerical Integration and Differential

Equations

This chapter covers the numerical computation of integrals (§14.1) and the
numerical resolution of ordinary differential equations (§14.2) with Sage. We
recall the theoretical bases of integration methods, then we detail the available
functions and their usage (§14.1.1).

We have already seen in §2.3.8 how to compute an integral symbolically with
Sage; this will only be briefly mentioned in this chapter. This “symbolic-numeric”
approach, when it is possible, is one of the strengths of Sage, and should be
preferred because the number of numerical computations performed — and thus
the number of roundoff errors — is usually less than with purely numerical
integration methods.

For differential equations, we give a quick introduction to the classical res-
olution methods, and after an introductory example (§14.2.1), we describe the
functionalities of Sage (§14.2.2).

14.1 Numerical Integration
We consider the numerical integration of real functions; for a function f : I −→ R,
where I is an interval of R, we want to approximate:∫

I

f(x) dx.

For example, let us compute∫ 3

1
exp(−x2) log(x) dx.
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Figure 14.1 – The functions x 7→ exp(−x2) log(x) and x 7→ sin(x2)
x2 .

sage: x = var('x'); f(x) = exp(-x^2) * log(x)
sage: N(integrate(f, x, 1, 3))
0.035860294991267694

sage: plot(f, 1, 3, fill='axis')

Since the integrate function computes a symbolic integral of the given
expression, we have to explicitly ask if we want a numerical value.

It is also possible, in principle, to compute integrals on an unbounded interval:

sage: N(integrate(sin(x^2)/(x^2), x, 1, infinity))
0.285736646322853 - 6.93889390390723e-18*I

sage: plot(sin(x^2)/(x^2), x, 1, 10, fill='axis')

Several methods exist in Sage to perform numerical integration, and even if
their implementations differ technically, they all follow one of the two following
principles:

• a polynomial interpolation (in particular the Gauss-Kronrod method);

• a function transformation (double exponential method).

Interpolation Methods. In these methods, we evaluate the function f to
integrate at a given number n of well-chosen points x1, x2, . . . , xn, and we deduce
an approximation of the integral of f on [a, b] by∫ b

a

f(x) dx ≈
n∑
i=1

wif(xi).

The wi coefficients are the “weights” of the method, which are determined by
the fact that the method should be exact for any polynomial f of degree less or
equal to n− 1. For fixed points (xi), the weights (wi) are uniquely determined
by this condition. We define the order of the method as the maximal degree of



14.1. NUMERICAL INTEGRATION 307

polynomials whose integral is exact; this order is thus at least n−1 by construction,
but it might be larger.

For example, the family of Newton-Cotes integration methods (which contains
the rectangle rule, the trapezoidal rule, Simpson’s rule) use equally spaced points
on the interval [a, b]:

sage: fp = plot(f, 1, 3, color='red')
sage: n = 4
sage: interp_points = [(1+2*u/(n-1), N(f(1+2*u/(n-1))))
....: for u in xrange(n)]
sage: A = PolynomialRing(RR, 'x')
sage: pp = plot(A.lagrange_polynomial(interp_points), 1, 3, fill='axis')
sage: fp+pp

1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

For the interpolation methods, we can consider that we first compute the Lagrange
interpolating polynomial of the given function, and that the integral of this
polynomial is the chosen approximate value for the integral. These two steps are
in fact merged into a formula called “quadrature rule”, the Lagrange interpolation
polynomial being never explicitly computed. The choice of the interpolation
points is crucial for the quality of the polynomial approximation, and equally
spaced points do not ensure convergence when the number of points increases
(this is called Runge’s phenomenon). The corresponding quadrature rule might
thus suffer from this problem, illustrated in Figure 14.2.

When we ask Sage to compute a numerical approximation of an integral on
an interval [a, b], the quadrature rule is not directly applied to the whole domain:
[a, b] is divided into sub-intervals small enough such that the quadrature rule
gives enough accuracy (this is called “method composition”). The subdivision
strategy might be for example dynamically tuned for the function to integrate:
if we denote Iba(f) the value of

∫ b
a
f(x) dx computed by the quadrature rule, we

compare
I0 = Iba(f)
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Figure 14.2 – Interpolation using a degree-10 polynomial (thin line) of the function
x 7→ 1/(1 + x2) (thick line) at 11 points equally spaced on [−10, 10]. Runge’s phenomenon
appears at endpoints.

with
I1 = I(a+b)/2

a (f) + Ib(a+b)/2(f)

and we stop the subdivision process when |I0 − I1| is small enough compared to
I0 with the required precision. Here comes into play the method order: for a
quadrature rule of order n, dividing the interval in 2 will divide the theoretical
error by 2n, i.e., without taking into account roundoff errors.

One of the interpolation methods available within Sage is the Gauss-Legendre
method. In this method, the n integration points are the roots of the Legendre
polynomial of degree n (with a translated interval of definition to match the
considered range [a, b]). The properties of Legendre polynomials, which are
orthogonal for the scalar product

〈f, g〉 =
∫ b

a

f(x)g(x) dx,

imply that the corresponding quadrature rule computes exactly the integrals
of polynomials of degree up to 2n − 1, instead of only n − 1 as in the general
case. Moreover, the corresponding integration weights are always positive, which
minimises the effect of numerical issues like cancellation1.

To conclude on interpolation methods, the Gauss-Kronrod method with 2n+ 1
points is an “extension” of the Gauss-Legendre method with n points:

• n of the 2n+ 1 points are the Gauss-Legendre integration points;
1This phenomenon happens when a sum of real numbers is significantly smaller (in absolute

value) than the summands: each rounding error might then be larger than the final result,
which yields a total loss of accuracy. See also §11.3.3.
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• the method is exact for any polynomial of degree up to 3n+ 1.

We can naively remark that the 3n+ 2 unknowns (the 2n+ 1 weights and the
n+ 1 added points) are a priori determined by requiring that the method is of
order at least 3n + 1 (which indeed yields 3n + 2 equalities). Beware that the
weights associated in the Gauss-Kronrod method to the n Gauss-Legendre points
have no reason to coincide with those associated in the original Gauss-Legendre
method.

Such an extension method becomes particularly interesting when the main
cost of a quadrature rule is the number of evaluations of the function f to
integrate (moreover if the integration points and weights are tabulated). The
Gauss-Kronrod method being in principle more precise than the Gauss-Legendre
method, we can use its result I1 to validate the result I0 of the latter method,
and obtain an estimate of the error as |I1 − I0|, while minimising the number of
evaluations of f . The reader might compare this strategy, which is particular to
the Gauss-Legendre method, with the more general subdivision strategy described
on page 308.

Double Exponential Methods. The double exponential (DE) methods rely
on a change of variable which transforms a bounded integration range into R,
and on the very good accuracy of the trapezoidal rule on R for analytic functions.
For a function f integrable on R, and an integration step h, the trapezoidal rule
computes

Ih = h

+∞∑
i=−∞

f(hi)

as approximate value for
∫ +∞
−∞ f(x) dx. Discovered in 1973 by Takahasi and Mori,

the double exponential transform is commonly used by numerical integration
software tools. We describe here its main features; an introduction to this
transform and its discovery is given in [Mor05]. This article gives in particular
an explanation of the surprising good accuracy of the trapezoidal rule, which is
optimal in a certain sense, for analytic functions on R.

To compute

I =
∫ 1

−1
f(x) dx,

it is possible to use a transform x = ϕ(t) where ϕ is analytic on R and satisfies

lim
t→−∞

ϕ(t) = −1, lim
t→∞

ϕ(t) = 1,

and then
I =

∫ ∞
−∞

f(ϕ(t))ϕ′(t) dt.

Applying the trapezoidal rule to this last expression, we compute

INh = h

N∑
k=−N

f(ϕ(kh))ϕ′(kh)
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Figure 14.3 – The transform ϕ(t) = tanh(π2 sinh t) used in the double exponential method
(left) and the decreasing of ϕ′(t) (right).

for a given step h, and truncating the sum to terms from −N to N . The proposed
transform is chosen to be

ϕ(t) = tanh
(π

2 sinh t
)

which yields the formula

INh = h

N∑
k=−N

f
(

tanh
(π

2 sinh kh
)) π

2 cosh kh
cosh2(π2 sinh kh)

.

The name of the method comes from the doubly exponential decreasing of

ϕ′(t) =
π
2 cosh t

cosh2(π2 sinh t)

when |t| → ∞ (see Figure 14.3). The main idea of the transform is to concentrate
the contribution of the function to integrate around 0, which explains the huge
decreasing of ϕ′(t) when |t| grows. A compromise should be found between the
choice of parameters and of the transform ϕ: a decreasing more than doubly
exponential decreases the truncation error but increases the discretisation error.

Since the discovery of the DE transform, this method is used alone or with
other transforms, according to the nature of the integrand, of its singularities and
of the integration domain. An example of other transform is the cardinal sine
function “sinc”:

f(x) ≈
N∑

k=−N
f(kh)Sk,h(x)

where
Sk,h(x) = sin(π(x− kh)/h)

π(x− kh)/h ,

used together with the double exponential method in [TSM05] to improve the
previous methods which relied on a single exponential transform ϕ(t) = tanh(t/2).
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Figure 14.4 – The cardinal sine function.

The sinc function is defined by

sinc =

1 if x = 0,
sin(πx)
πx

otherwise,

and its graph is shown in Figure 14.4.
The choice of the transform greatly influences the quality of the result in the

case of singularities at the interval bounds (there is no good solution yet in the
case of singularities inside the interval). We will see later that in the version
of Sage we consider, PARI/GP is the only system providing double exponential
transforms allowing to specify the behaviour at interval bounds.

14.1.1 Available Integration Functions
We will now see in more detail the various ways to compute a numerical integral
with Sage, through the following examples:

I1 =
∫ 42

17
exp(−x2) log(x) dx, I2 =

∫ 1

0
x log(1 + x) dx = 1

4 ,

I3 =
∫ 1

0

√
1− x2 dx = π

4 ,

I4 =
∫ 1

0
max(sin(x), cos(x)) dx =

∫ π
4

0
cos(x) dx+

∫ 1

π
4

sin(x) dx

= sin π4 + cos π4 − cos 1 =
√

2− cos 1,
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I5 =
∫ 1

0
sin(sin(x)) dx, I6 =

∫ π

0
sin(x) exp(cos(x)) dx = e− 1

e
,

I7 =
∫ 1

0

1
1 + 1010x2 dx = 10−5 arctan(105), I8 =

∫ 1,1

0
exp(−x100) dx,

I9 =
∫ 10

0
x2 sin(x3) dx = 1

3(1− cos(1000)), I10 =
∫ 1

0

√
x dx = 2

3 .

We do not give an exhaustive description of the integration functions — which
can be found in the on-line help — but only their more common usage.

N(integrate(...)). The first numerical method which can be used with Sage
is N(integrate(...)):

sage: N(integrate(exp(-x^2)*log(x), x, 17, 42))
2.5657285006962035e-127

It is not guaranteed that the integral will be computed really numerically this way.
Indeed, the integrate command requires a symbolic integration; if this succeeds,
then Sage will just evaluate numerically the obtained symbolic expression:

sage: integrate(log(1+x)*x, x, 0, 1)
1/4
sage: N(integrate(log(1+x)*x, x, 0, 1))
0.250000000000000

numerical_integral. On the contrary, the numerical_integral function ex-
plicitly requires a numerical integration of the given function. It calls the GSL
library (GNU Scientific Library), which implements the Gauss-Kronrod method
for a fixed number n of integration points. The points and weights are pre-
computed, and the precision is limited to that of machine floating-point numbers
(53-bit significand). The result is a pair with the computed approximation and
an estimate of the error:

sage: numerical_integral(exp(-x^2)*log(x), 17, 42)
(2.5657285006962035e-127, 3.3540254049238093e-128)

The error estimate is not a guaranteed bound on the error, but a simple indication
of the difficulty to approximate the given integral. In the above example, the
error estimate is so large that all digits of the result might be wrong, except the
most significant one.

The arguments of numerical_integral allow in particular:

• to choose the number of evaluation points (six choices from rule=1 for 15
points to rule=6 for 61 points, which is the default value);

• to ask for an adaptive subdivision (default choice), or require a direct
application of the composition method on the integration interval (with the
option algorithm=’qng’);

• to bound the number of evaluations of the integrand.
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Forbidding GSL to perform an adaptive integration might lead to a loss of
accuracy:

sage: numerical_integral(exp(-x^100), 0, 1.1)
(0.99432585119150..., 4.0775730...e-09)
sage: numerical_integral(exp(-x^100), 0, 1.1, algorithm='qng')
(0.994327538576531..., 0.016840666914688864)

When the integrate command does not find an analytic expression for the
requested integral, it returns the input integral unchanged:

sage: integrate(exp(-x^2)*log(x), x, 17, 42)
integrate(e^(-x^2)*log(x), x, 17, 42)

and the numerical evaluation with N calls numerical_integral. This explains in
particular why the precision parameter is ignored in that case:

sage: N(integrate(exp(-x^2)*log(x), x, 17, 42), digits=60)
2.5657285006962035e-127

but we get:
sage: N(integrate(sin(x)*exp(cos(x)), x, 0, pi), digits=60)
2.35040238728760291376476370119120163031143596266819174045913

because the symbolic integration succeeds in that case.

sage.calculus.calculus.nintegral. For the symbolic functions, it is possible
to ask Maxima for a numerical approximation of the integral:

sage: sage.calculus.calculus.nintegral(sin(sin(x)), x, 0, 1)
(0.430606103120690..., 4.78068810228705...e-15, 21, 0)

and it is also possible to directly call the nintegral method on an object of type
Expression:

sage: g = sin(sin(x))
sage: g.nintegral(x, 0, 1)
(0.430606103120690..., 4.78068810228705...e-15, 21, 0)

Maxima calls the QUADPACK numerical quadrature library, which like GSL
is limited to machine floating-point numbers. The nintegral method uses an
adaptive subdivision strategy of the integration interval, and we might indicate:

• the wanted relative accuracy of the result;

• the maximal number of sub-intervals for the computation.
The output is a tuple:

1. the approximation of the integral;

2. an estimate of the absolute error;

3. the number of evaluations of the integrand;

4. an error code (0 if no problem was encountered, for more details on the
other possible values the reader should look at the reference manual with
sage.calculus.calculus.nintegral?).



314 CHAP. 14. NUMERICAL INTEGRATION

gp(’intnum(...)’). The PARI/GP calculator, which is available within Sage,
also implements a numerical integration command called intnum:

sage: gp('intnum(x=17, 20, exp(-x^2)*log(x))')
2.5657285005610514829173563961304785900 E-127

The intnum command uses the double exponential method, but beware, it does
not guarantee any correct significant digit of the result!

We might ask for a given precision of the result by modifying the global
precision of the PARI/GP interpreter:

sage: gp('intnum(x=0, 1, sin(sin(x)))')
0.43060610312069060491237735524846578643
sage: old_prec = gp.set_precision(50)
sage: gp('intnum(x=0, 1, sin(sin(x)))')
0.43060610312069060491237735524846578643360804182200

A major bottleneck is that the integrand must be given as a character string,
following the PARI/GP syntax, it is thus not possible to integrate arbitrary
functions this way.

The intnum command allows us to indicate the behaviour of the integrand at
the interval bounds. The following example demonstrates the corresponding effect
on the result accuracy. Let us integrate x 7→ x−99/100 without any indication:

sage: p = gp.set_precision(old_prec) # we reset the default precision
sage: gp('intnum(x=0, 1, x^(-99/100))')
73.62914262423378365

If we give the nature of the singularity, i.e., that the function behaves like
x 7→ x−99/100 at 0:

sage: gp('intnum(x=[0, -99/100], 1, x^(-99/100))')
100.00000000000000000000000000000000000

The user is responsible for the exactness of the given behaviour; if we erroneously
say that the function behaves like x 7→ x−1/42 at 0, the error will remain large:

sage: gp('intnum(x=[0, -1/42], 1, x^(-99/100))')
74.47274932028288503

mpmath.quad*. The mpmath library is an arbitrary precision numerical library
written in Python. It is able to compute with floating-point real and complex
numbers, with matrices, and floating-point real intervals.

It provides numerical quadrature functions (the principal one being quad) and
is available within Sage, after importing it:

sage: import mpmath
sage: mpmath.mp.prec = 53
sage: mpmath.quad(lambda x: mpmath.sin(mpmath.sin(x)), [0, 1])
mpf('0.43060610312069059')
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The mpmath floating-point numbers mpf(...) might be converted in Sage floating-
point numbers and vice-versa:

sage: a = RDF(pi); b = mpmath.mpf(a); b
mpf('3.1415926535897931')
sage: c = RDF(b); c
3.141592653589793

The user might specify the wanted precision either in decimal digits (mpmath.mp.dps)
or in bits (mpmath.mp.prec), as with the command N from Sage: N(...,53) or
N(...,digits=17).

sage: mpmath.mp.prec = 113
sage: mpmath.quad(lambda x: mpmath.sin(mpmath.sin(x)), [0, 1])
mpf('0.430606103120690604912377355248465809')

The mpmath.quad function might use either the Gauss-Legendre method, or the
double exponential method (this latter being used by default). The method to
use might be fixed with the functions mpmath.quadgl and mpmath.quadts.2

An important limitation of the mpmath integration functions within Sage is
that they cannot manipulate arbitrary Sage expressions:

sage: mpmath.quad(sin(sin(x)), [0, 1])
Traceback (most recent call last):
...
TypeError: no canonical coercion from <type 'sage.libs.mpmath.ext_main.

mpf'> to Symbolic Ring

The situation is however less dramatic than for PARI/GP which is limited to its
own syntax. It is indeed possible to define evaluation and conversion procedures
to integrate via mpmath.quad arbitrary functions3:

sage: g(x) = max_symbolic(sin(x), cos(x))
sage: mpmath.mp.prec = 100
sage: mpmath.quadts(lambda x: g(N(x, 100)), [0, 1])
mpf('0.873912416263035435957979086252')

The integration of irregular functions (like the above I4 example) might lead to a
significant accuracy loss, even when asking for a large precision:

sage: mpmath.mp.prec = 170
sage: mpmath.quadts(lambda x: g(N(x, 190)), [0, 1])
mpf('0.87391090757400975205393005981962476344054148354188794')
sage: N(sqrt(2) - cos(1), 100)
0.87391125650495533140075211677

We get only 5 correct digits here. We can nevertheless help mpmath by suggesting
a subdivision of the interval domain (here at the irregular point, cf. Figure 14.5):

2Which recalls the name of the transform ϕ : t 7→ tanh(π2 sinh(t)) which was seen above.
3The reader wondering why we used max_symbolic will try with max instead, and will look

at the max_symbolic on-line help.
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Figure 14.5 – The function x 7→ max(sin(x), cos(x)). The irregularity in π/4 renders
numerical integration quite troublesome.

sage: mpmath.quadts(lambda x: g(N(x, 170)), [0, mpmath.pi / 4, 1])
mpf('0.87391125650495533140075211676672147483736145475902551')

The discontinuous functions (or those having a discontinuous derivative) are
a classical “trap” for integration methods; however an automatic subdivision
strategy, as described above, can limit the damage.

Exercise 49 (Computation of Newton-Cotes coefficients). We want to compute the
coefficients of the Newton-Cotes method with n points, which is not available within
Sage. We consider for the sake of simplicity that the interval domain is I = [0, n− 1],
the integration points being thus x1 = 0, x2 = 1, . . . , xn = n− 1. The coefficients (wi)
of the quadrature rule are such that the equation∫ n−1

0
f(x) dx =

n−1∑
i=0

wif(i) (14.1)

is exact for any polynomial f of degree up to n− 1.

1. We consider for i ∈ {0, . . . , n − 1} the polynomial Pi(X) =
∏n−1

j=0
j 6=i

(X − xj). By

applying Equation (14.1) to Pi, determine wi in terms of Pi.

2. Deduce a function NCRule which associates to n the coefficients of Newton-Cotes’
rule with n points on the interval [0, n− 1].

3. Show how to apply these weights to an interval [a, b], with a, b any real numbers.

4. Write a function QuadNC which computes the integral of a function given on
a segment of R given as parameter. Compare its results with the integration
functions available in Sage on the integrals I1 to I10.



14.1. NUMERICAL INTEGRATION 317

14.1.2 Multiple Integrals
Let us consider the double integral:

I =
∫ 1

0

∫ √y
0

exp(y sin x) dx dy.

We first try to reduce it to a simple integral, by looking for a closed form for the
inner integral, which fails in this case:

sage: y = var('y'); integrate(exp(y*sin(x)), (x, 0, sqrt(y)))
integrate(e^(y*sin(x)), x, 0, sqrt(y))

Since Sage does not provide any functionality for multiple integrals, we rewrite the
problem as I =

∫ 1
0 f(y) dy, where f is a Sage function, itself calling a numerical

integration method:

sage: f = lambda y: numerical_integral(lambda x: exp(y*sin(x)), \
0, sqrt(y))[0]

sage: f(0.0), f(0.5), f(1.0)
(0.0, 0.8414895067661431, 1.6318696084180513)

We can now evaluate the integral of f on [0, 1] numerically:

sage: numerical_integral(f, 0, 1)
(0.8606791942204567, 6.301207560882073e-07)

We might also use sage.calculus.calculus.nintegral to compute f :

sage: f = lambda y: sage.calculus.calculus.nintegral(exp(y*sin(x)), \
x, 0, sqrt(y))[0]

sage: numerical_integral(f, 0, 1)
(0.860679194220456..., 6.301207560882096e-07)

or even mpmath.quad:

sage: f = lambda y: RDF(mpmath.quad(lambda x: mpmath.exp(y*mpmath.sin(x)), \
[0, sqrt(y)]))

sage: numerical_integral(f, 0, 1)
(0.8606791942204567, 6.301207561187562e-07)

Note that mpmath is able to compute multiple integrals directly, even in arbitrary
precision, however only on a rectangular domain:

sage: mpmath.mp.dps = 60
sage: f = lambda x, y: mpmath.exp(y*mpmath.sin(x))
sage: mpmath.quad(f, [0,1], [0,1])
mpf('1.28392205755238471754385917646324675741664250325189751108716305')

Sometimes, in particular when the integrand is expensive to compute, we want
an answer with at most (say) n2 evaluations, even if we get a worse accuracy of
the result. Here is a solution using the options algorithm and max_points of
numerical_integral:
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sage: def evalI(n):
....: f = lambda y: numerical_integral(lambda x: exp(y*sin(x)),
....: 0, sqrt(y), algorithm='qng', max_points=n)[0]
....: return numerical_integral(f, 0, 1, algorithm='qng', max_points=n)
sage: evalI(100)
(0.8606792028826138, 5.553962923506737e-07)

14.2 Solving Ordinary Differential Equations
Numerically

In this section, we are interested in solving ordinary differential equations nu-
merically. The available functions in Sage are able to deal with systems of the
form: 

dy1
dt (t) = f1(t, y1(t), y2(t), . . . , yn(t))

dy2
dt (t) = f2(t, y1(t), y2(t), . . . , yn(t))

...
dyn
dt (t) = fn(t, y1(t), y2(t), . . . , yn(t))

with known initial conditions (y1(0), y2(0), . . . , yn(0)).
This setting enables us to solve also problems of order larger than 1, by

introducing auxiliary variables (see the detailed example in §14.2.1). It does
not however allow to represent the system of equations satisfied by Dickman’s ρ
function: {

uρ′(u) + ρ(u− 1) = 0 for u > 1,
ρ(u) = 1 for 0 6 u 6 1.

Indeed, the tools to solve ordinary differential equations are not suited to such an
equation (called with delay).

The “one-step” numerical methods all use the same general principle: for a
given step h and known values of y(t0) and y′(t0), we compute an approximation
of y(t0 +h) from an estimate of y′(t) taken on the interval [t0, t0 +h]. The simplest
method consists in the approximation:

∀t ∈ [t0, t0 + h], y′(t) ≈ y′(t0),∫ t0+h

t0

y′(t) dt ≈ hy′(t0),

y(t0 + h) ≈ y(t0) + hy′(t0).

The approximation of y′ by a constant on [t0, t0 + h] reminds us of the rectangle
quadrature rule. The obtained method is of order 1, i.e., the error made after one
computation step is O(h2), assuming f is regular enough. In general a method is
of order p if the error made on a step of width h is O(hp+1). The value obtained
in t1 = t0 + h is used as starting point to make one further step, until the desired
target.

This order 1 method, called Euler’s method, is not renowned for its accuracy
(as the rectangle rule for numerical integration), and some higher order methods
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exist, for example the Runge-Kutta method of order 2 to solve the equation
y′ = f(t, y):

k1 = hf(tn, y(tn))

k2 = hf(tn + 1
2h, y(tn) + 1

2k1)

y(tn+1) ≈ y(tn) + k2 +O(h3).

In this method, we try to evaluate y′(tn+h/2) to get a better estimate of y(tn+h).
Some multi-step methods also exist (for example Gear’s method): they consist

in computing y(tn) from the already computed values y(tn−1), y(tn−2), . . . , y(tn−`),
for a given number ` of steps. These methods necessarily require an initial phase,
before enough values are available.

Similarly to the Gauss-Kronrod quadrature method, some hybrid methods
exist for solving differential equations. For example, the Dormand-Prince method
computes with the same approximation points a value at orders 4 and 5, the latter
being used to estimate the error made for the former. We say it is an adaptive
method.

We also distinguish between explicit and implicit methods: in an explicit
method, the value of y(tn+1) is given by a formula using known values only; for
an implicit method we have to solve an equation. Let us consider for example
Euler’s implicit method:

y(tn+1) = y(tn) + hf(tn+1, y(tn+1)).

The wanted value y(tn+1) appears on both sides of the equation; if the function
f is complex enough, we have to solve a non-linear algebraic system, typically
using Newton’s method (see §12.2.2).

A priori, we expect more accurate results if we decrease the integration step h;
in addition to the extra computations it implies, the expected accuracy gain is
however counter-balanced by the increased roundoff errors which, at the end,
might be significant with respect to the final result.

14.2.1 An Example
Let us consider the Van der Pol oscillator of parameter µ, satisfying the following
differential equation:

d2x

dt2 (t)− µ(1− x2)dx
dt (t) + x(t) = 0.

Writing y0(t) = x(t) and y1(t) = dx
dt , we get the order 1 system:{ dy0

dt = y1,
dy1
dt = µ(1− y2

0)y1 − y0.

To solve it, we will use a “solver” object provided by the ode_solver command:
sage: T = ode_solver()
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A solver object enables us to register the definition and the parameters of the
system we want to solve; it gives access to the numerical tools for solving differential
equations from the GSL library, already mentioned for numerical quadrature.

The system equations are given in the form of a function:
sage: def f_1(t,y,params): return [y[1],params[0]*(1-y[0]^2)*y[1]-y[0]]
sage: T.function = f_1

The parameter y represents the vector of unknown functions, and we should
return the right-hand side vector of the system, in terms of t and an optional
parameter (here params[0] which represents µ).

Some of the GSL algorithms require the system Jacobian as well (the matrix
whose (i, j) term is ∂fi

∂yj
, and whose last line contains ∂fj

∂t ):

sage: def j_1(t,y,params):
....: return [[0, 1],
....: [-2*params[0]*y[0]*y[1]-1, params[0]*(1-y[0]^2)],
....: [0,0]]
sage: T.jacobian = j_1

it is now possible to ask for a numerical solution. We choose the algorithm,
the interval on which we want the solution, and the number of steps, which
determines h:

sage: T.algorithm = "rk8pd"
sage: T.ode_solve(y_0=[1,0], t_span=[0,100], params=[10],
....: num_points=1000)
sage: f = T.interpolate_solution()

Here, we have chosen the Runge-Kutta Dormand-Prince algorithm to compute
the solution on [0, 100]; the initial conditions and the value of the parameters
(here one only) are given too: y_0=[1,0] means y0(0) = 1, y1(0) = 0, i.e.,
x(0) = 1, x′(0) = 0.

To show the graph of the solution (we might try plot(f, 0, 2) to see the
zero derivative in t = 0 more clearly):

sage: plot(f, 0, 100)
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14.2.2 Available Functions
We have already mentioned for the solver objects from GSL the rk8pd method.
Other methods are available:

rkf45: Runga-Kutta-Fehlberg, an adaptive method of orders 5 and 4;

rk2: adaptive Runge-Kutta of orders 3 and 2;

rk4: the classical Runge-Kutta method of order 4;

rk2imp: an implicit order 2 Runge-Kutta method with evaluation in the
middle of the interval;

rk4imp: an implicit order 4 Runge-Kutta method with evaluation at “Gaussian
points”4;

bsimp: the implicit Burlisch-Stoer method;

gear1: the implicit one-step Gear method;

gear2: the implicit two-step Gear method.

For more details on all these methods, we refer the reader to [AP98].
One should note that the GSL limitation to machine floating-point numbers —

thus of fixed precision — that we mentioned for the numerical integration also
holds for solving differential equations.

Maxima also provides routines to solve differential equations numerically, with
its own syntax:

sage: t, y = var('t, y')
sage: desolve_rk4(t*y*(2-y), y, ics=[0,1], end_points=[0, 1], step=0.5)
[[0, 1], [0.5, 1.12419127424558], [1.0, 1.461590162288825]]

The desolve_rk4 function uses the order-4 Runge-Kutta method (the same as
rk4 for GSL) and takes as parameters:

• the right-hand side of the equation y′(t) = f(t, y(t)), here y′ = ty(2− y);

• the name of the unknown function, here y;

• the initial conditions ics, here t = 0 and y = 1;

• the resolution interval end_points, here [0, 1];

• the resolution step, here 0.5.

We omit the similar command desolve_system_rk4, already mentioned in Chap-
ter 4, and which applies to a differential system. Maxima is limited to machine
precision too.

If we want arbitrary precision solutions, we might use odefun from the mpmath
package:

4The roots of the degree-2 Legendre polynomial, which are shifted on the interval [t, t+ h],
and whose name makes reference to the Gauss-Legendre quadrature rule.
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sage: import mpmath
sage: mpmath.mp.prec = 53
sage: sol = mpmath.odefun(lambda t, y: y, 0, 1)
sage: sol(1)
mpf('2.7182818284590451')
sage: mpmath.mp.prec = 100
sage: sol(1)
mpf('2.7182818284590452353602874802307')
sage: N(exp(1), 100)
2.7182818284590452353602874714

The arguments of the mpmath.odefun function are:

• the right-hand sides of the system of equations, in the form of a function
(t, y) 7→ f(t, y(t)), here y′ = y, like for the ode_solver function. The
dimension of the system is automatically deduced from the dimension of
the function return value;

• the initial conditions t0 and y(t0), here y(0) = 1.

For example for this two-dimensional system{
y′1 = −y2
y′2 = y1

whose solutions are (cos(t), sin(t)), with initial conditions y1(0) = 1 and y2(0) = 0:

sage: mpmath.mp.prec = 53
sage: f = mpmath.odefun(lambda t, y: [-y[1], y[0]], 0, [1, 0])
sage: f(3)
[mpf('-0.98999249660044542'), mpf('0.14112000805986721')]
sage: (cos(3.), sin(3.))
(-0.989992496600445, 0.141120008059867)

The mpmath.odefun function relies on Taylor’s method. For degree p it uses:

y(tn+1) = y(tn) + h
dy
dt (tn) + h2

2!
d2y

dt2 (tn) + . . .+ hp

p!
dpy
dtp (tn) +O(hp+1).

The main question is the computation of the derivatives of y. For this purpose,
odefun computes approximate values

[ỹ(tn + h), . . . , ỹ(tn + ph)] ≈ [y(tn + h), . . . , y(tn + ph)]

using p steps of the less precise method of Euler. We then compute

d̃y
dt (tn) ≈ ỹ(tn + h)− ỹ(tn)

h
,

˜dy
dt (tn + h) ≈ ỹ(tn + 2h)− ỹ(tn + h)

h

then
d̃2y

dt2 (tn) ≈
˜dy

dt (tn + h)− d̃y
dt (tn)

h
,
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and so on until we obtain estimates of the derivative of y in tn up to order p.
Care must be taken when we change the floating-point precision of mpmath.

To illustrate this problem, let us consider again the differential equation y′ = y
seen above, satisfied by the exp function:

sage: mpmath.mp.prec = 10
sage: sol = mpmath.odefun(lambda t, y: y, 0, 1)
sage: sol(1)
mpf('2.7148')
sage: mpmath.mp.prec = 100
sage: sol(1)
mpf('2.7135204235459511323824699502438')

The last approximation of exp(1) is quite bad, albeit being computed with 100
bits of precision! The solution function sol (an “interpolator” in the mpmath
jargon) has been computed with 10 bits of precision only, and its coefficients are
not recomputed when the precision is changed, which explains the result.
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Part IV

Combinatorics





15
Enumeration and Combinatorics

This chapter mainly covers the treatment in Sage of the following combinatorial
problems: enumeration (how many elements are there in a set S?), listing (generate
all elements of S, or iterate through them), and random selection (choosing an
element at random from a set S according to a given distribution, for example
the uniform distribution). These questions arise naturally in the calculation of
probabilities (what is the probability in poker of obtaining a straight or a four-of-
a-kind of aces?), in statistical physics, and also in computer algebra (the number
of elements in a finite field), or in the analysis of algorithms. Combinatorics
covers a much wider domain (partial orders, representation theory. . . ) for which
we only give a few pointers towards the possibilities offered by Sage. Graphs are
treated in Chapter 16.

A characteristic of computational combinatorics is the profusion of types of
objects and sets that one wants to manipulate. It would be impossible to describe
them all or, a fortiori, to implement them all. After some examples (§15.1), this
chapter illustrates the underlying method: supplying the basic building blocks
for describing common combinatorial sets §15.2, tools for combining them to
construct new examples §15.3, and generic algorithms for solving uniformly a
large class of problems §15.4. On a first reading, this chapter can be skipped
through quickly, pausing at the summaries of the sections §15.1.2 and §15.3.

This is a domain in which Sage has much more extensive capabilities than
most computer algebra systems, and it is rapidly expanding; at the same time, it
is still quite new, and has many unnecessary limitations and inconsistencies.
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15.1 Initial Examples

15.1.1 Poker and Probability
We begin by solving a classic problem: enumerating certain combinations of cards
in the game of poker, in order to deduce their probability.

A card in a poker deck is characterised by a suit (hearts, diamonds, spades,
or clubs) and a value (2, 3, . . . , 10, jack, queen, king, ace). The game is played
with a full deck, which is the Cartesian product of the set of suits and the set of
values:

Cards = Suits×Values = {(s, v) | s ∈ Suits and v ∈ Values} .

We construct these examples in Sage:

sage: Suits = Set(["Hearts", "Diamonds", "Spades", "Clubs"])
sage: Values = Set([2, 3, 4, 5, 6, 7, 8, 9, 10,
....: "Jack", "Queen", "King", "Ace"])
sage: Cards = cartesian_product([Values, Suits])

There are 4 suits and 13 possible values, and therefore 4× 13 = 52 cards in
the poker deck:

sage: Suits.cardinality()
4
sage: Values.cardinality()
13
sage: Cards.cardinality()
52

Draw a card at random:

sage: Cards.random_element()
(6, 'Clubs')

Draw two cards at random:

sage: Set([Cards.random_element(), Cards.random_element()])
{(2, 'Hearts'), (4, 'Spades')}

Returning to our main topic, we will be considering a simplified version of
poker, in which each player directly draws five cards, which form his hand. The
cards are all distinct and the order in which they are drawn is irrelevant; a hand
is therefore a subset of size 5 of the set of cards. To draw a hand at random,
we first construct the set of all possible hands, and then we ask for a randomly
chosen element:

sage: Hands = Subsets(Cards, 5)
sage: Hands.random_element()
{(4, 'Hearts'), (9, 'Diamonds'), (8, 'Spades'),
(9, 'Clubs'), (7, 'Hearts')}
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The total number of hands is given by the number of subsets of size 5 of a set
of size 52, which is given by the binomial coefficient

(52
5
)
:

sage: binomial(52, 5)
2598960

One can also ignore the method of calculation, and simply ask for the size of
the set of hands:

sage: Hands.cardinality()
2598960

The strength of a poker hand depends on the particular combination of cards
present. One such combination is the flush; this is a hand all of whose cards have
the same suit. (In principle, straight flushes should be excluded; this will be the
goal of an exercise given below.) Such a hand is therefore characterised by the
choice of five values from among the thirteen possibilities, and the choice of one
of four suits. We will construct the set of all flushes, so as to determine how many
there are:

sage: Flushes = cartesian_product([Subsets(Values, 5), Suits])
sage: Flushes.cardinality()
5148

The probability of obtaining a flush when drawing a hand at random is
therefore:

sage: Flushes.cardinality() / Hands.cardinality()
33/16660

or about two in a thousand:

sage: 1000.0 * Flushes.cardinality() / Hands.cardinality()
1.98079231692677

We will now attempt a little numerical simulation. The following function
tests whether a given hand is a flush or not:

sage: def is_flush(hand):
....: return len(set(suit for (val, suit) in hand)) == 1

We now draw 10000 hands at random, and count the number of flushes obtained.
(This takes about 10 seconds.)

sage: n = 10000
sage: nflush = 0
sage: for i in range(n):
....: hand = Hands.random_element()
....: if is_flush(hand):
....: nflush += 1
sage: print(n, nflush)
10000, 18
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Figure 15.1 – The five complete binary trees with four leaves.

Exercise 50. A hand containing four cards of the same value is called a four of
a kind. Construct the set of four of a kind hands. (Hint: use Arrangements to choose
a pair of distinct values at random, then choose a suit for the first value.) Calculate
the number of four of a kind hands, list them, and then determine the probability of
obtaining a four of a kind when drawing a hand at random.

Exercise 51. A hand all of whose cards have the same suit, is called a straight
flush if those values are consecutive, otherwise it is called a flush. Count the number
of straight flushes, and then deduce the correct probability of obtaining a flush when
drawing a hand at random.

Exercise 52. Calculate the probability of each of the poker hands (see http://en.
wikipedia.org/wiki/Poker_hands), and compare them with the results of simulations.

15.1.2 Enumeration of Trees Using Generating Functions
In this section, we discuss the example of complete binary trees, and illustrate in
this context many techniques of enumeration in which formal power series play a
natural role. These techniques are quite general, and can be applied whenever
the combinatorial objects in question admit a recursive definition (grammar) (see
§15.4.3 for an automated treatment). The goal is not a formal presentation of
these methods; the calculations are rigorous, but most of the justifications will be
skipped.

A complete binary tree is either a leaf F, or a node to which two complete
binary trees are attached (see Figure 15.1).

Exercise 53. Find by hand all complete binary trees with n = 1, 2, 3, 4, 5 leaves
(see Exercise 61 to find them using Sage).

Our goal is to determine the number cn of complete binary trees with n leaves
(in this section, except when explicitly stated otherwise, “trees” always means
complete binary trees). This is a typical situation where one is not only interested
in a single set, but in a family of sets, typically parameterised by n ∈ N.

According to the solution of Exercise 53, the first terms are given by c1, . . . , c5 =
1, 1, 2, 5, 14. The simple fact of knowing these few numbers is already very valu-
able. In fact, this permits research in a gold mine of information: the Online
Encyclopedia of Integer Sequences http://oeis.org/ (commonly called “Sloane”,
the name of its principal author), which contains more than 282892 sequences of
integers:

sage: oeis([1,1,2,5,14])
0: A000108: Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n

+1)!). Also called Segner numbers.
1: A120588: G.f. satisfies: 3*A(x) = 2 + x + A(x)^2, with a(0) = 1.

http://en.wikipedia.org/wiki/Poker_hands
http://en.wikipedia.org/wiki/Poker_hands
http://oeis.org/
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2: A080937: Number of Catalan paths (nonnegative, starting and ending at
0, step +/-1) of 2*n steps with all values <= 5.

The result suggests that the trees are counted by one of the most famous se-
quences, the Catalan numbers. Looking through the references supplied by the
Encyclopedia, we see that this is really the case: the few numbers above form a
digital fingerprint of our objects, which enables us to find, in a few seconds, a
precise result from within an abundant literature.

Enumeration Using Generating Series. Our next goal is to recover this
result using Sage. Let Cn be the set of trees with n leaves, so that cn = |Cn|;
by convention, we will define C0 = ∅ and c0 = 0. The set of all trees is then the
disjoint union of the sets Cn:

C =
⊎
n∈N

Cn .

Having named the set C of all trees, we can translate the recursive definition of
trees into a set-theoretic equation:

C ≈ {L} ] C × C .

In words: a tree t (which is by definition in C) is either a leaf (so in {L}) or a
node to which two trees t1 and t2 have been attached, and which we can therefore
identify with the pair (t1, t2) (in the Cartesian product C × C).

The founding idea of algebraic combinatorics, introduced by Euler in a letter
to Goldbach of 1751 to treat a similar problem, is to manipulate all numbers cn
simultaneously, by encoding them as coefficients in a formal power series, called
the generating function of the cn’s:

C(z) =
∑
n∈N

cnz
n ,

where z is a formal variable (which means that we do not have to worry about
questions of convergence). The beauty of this idea is that set-theoretic operations
(A]B, A×B) translate naturally into algebraic operations on the corresponding
series (A(z) +B(z), A(z) ·B(z)), in such a way that the set-theoretic equation
satisfied by C can be translated directly into an algebraic equation satisfied by
C(z):

C(z) = z + C(z) · C(z).

Now we can solve this equation with Sage. In order to do so, we introduce
two variables, C and z, and we define the equation:

sage: C, z = var('C, z'); sys = [ C == z + C*C ]

There are two solutions, which happen to have closed forms:

sage: sol = solve(sys, C, solution_dict=True); sol
[{C: -1/2*sqrt(-4*z + 1) + 1/2}, {C: 1/2*sqrt(-4*z + 1) + 1/2}]
sage: s0 = sol[0][C]; s1 = sol[1][C]
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and whose Taylor series begin as follows:

sage: s0.series(z, 6)
1*z + 1*z^2 + 2*z^3 + 5*z^4 + 14*z^5 + Order(z^6)
sage: s1.series(z, 6)
1 + (-1)*z + (-1)*z^2 + (-2)*z^3 + (-5)*z^4 + (-14)*z^5 + Order(z^6)

The second solution is clearly nonsensical, while the first one gives the expected
coefficients. Therefore, we set:

sage: C = s0

We can now calculate the next terms:

sage: C.series(z, 11)
1*z + 1*z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 +
132*z^7 + 429*z^8 + 1430*z^9 + 4862*z^10 + Order(z^11)

or calculate, more or less instantaneously, the 100-th coefficient:

sage: C.series(z, 101).coefficient(z,100)
227508830794229349661819540395688853956041682601541047340

It is unfortunate to have to recalculate everything if at some point we wanted
the 101-st coefficient. Lazy power series (see §7.5.3) come into their own here, in
that one can define them from a system of equations without solving it, and, in
particular, without needing a closed form for the answer. We begin by defining
the ring of lazy power series:

sage: L.<z> = LazyPowerSeriesRing(QQ)

Then we create a “free” power series, which we name, and which we then define
by a recursive equation:

sage: C = L()
sage: C._name = 'C'
sage: C.define( z + C * C )

sage: [C.coefficient(i) for i in range(11)]
[0, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]

At any point, one can ask for any coefficient without having to redefine C:

sage: C.coefficient(100)
227508830794229349661819540395688853956041682601541047340

sage: C.coefficient(200)
1290131580644291140012229076696766751343495305527288824998
10851598901419013348319045534580850847735528275750122188940
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Recurrence Relation and Closed-Form Formula. We now return to the
closed form of C(z):

sage: z = var('z'); C = s0; C
-1/2*sqrt(-4*z + 1) + 1/2

The n-th coefficient in the Taylor series for C(z) being given by 1
n!C(z)(n)(0), we

look at the successive derivatives C(z)(n)(z):

sage: derivative(C, z, 1)
1/sqrt(-4*z + 1)
sage: derivative(C, z, 2)
2/(-4*z + 1)̂ (3/2)
sage: derivative(C, z, 3)
12/(-4*z + 1)̂ (5/2)

This suggests the existence of a simple explicit formula, which we now seek. The
following small function returns dn = n! cn:

sage: def d(n): return derivative(C, n).subs(z=0)

Taking successive quotients:

sage: [ (d(n+1) / d(n)) for n in range(1,17) ]
[2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62]

we observe that dn satisfies the recurrence relation dn+1 = (4n−2)dn, from which
we deduce that cn satisfies the recurrence relation cn+1 = (4n−2)

n+1 cn. Simplifying,
we find that cn is the (n− 1)-th Catalan number:

cn = Catalan(n− 1) = 1
n

(
2(n− 1)
n− 1

)
.

We check this:

sage: def c(n): return 1/n*binomial(2*(n-1),n-1)
sage: [c(k) for k in range(1, 11)]
[1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]
sage: [catalan_number(k-1) for k in range(1, 11)]
[1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]

We can now calculate coefficients much further; here we calculate c100000 which
has more than 60000 digits:

sage: %time cc = c(100000)
CPU times: user 2.34 s, sys: 0.00 s, total: 2.34 s
Wall time: 2.34 s
sage: ZZ(cc).ndigits()
60198
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Systematic Treatment by Algebraic-Differential Equations. The meth-
ods that we have used generalise to all recursively defined objects: the system
of set-theoretic equations can be translated into a system of equations on the
generating function, which enables the recursive calculation of its coefficients. If
the set-theoretic equations are simple enough (for example, if they only involve
Cartesian products and disjoint unions), the equation for C(z) is algebraic. This
equation has, in general, no closed-form solution. However, using confinement,
one can deduce a linear differential equation that C(z) satisfies. This differential
equation, in turn, can be translated into a recurrence relation of fixed length
on its coefficients cn. In this case, the series is called D-finite. After the initial
calculation of this recurrence relation, the calculation of coefficients is very fast.
All these steps are purely algorithmic, and it is planned to port into Sage the
implementations that exist in Maple (the gfun and combstruct packages) or
MuPAD-Combinat (the decomposableObjects library).

For the moment, we illustrate this general procedure in the case of complete
binary trees. The generating function C(z) is a solution to an algebraic equation
P (z, C(z)) = 0, where P = P (x, y) is a polynomial with coefficients in Q. In the
present case, P = y2− y+ x. We formally differentiate this equation with respect
to z:

sage: x, y, z = var('x, y, z')
sage: P = function('P')(x, y); C = function('C')(z)
sage: equation = P(x=z, y=C) == 0
sage: diff(equation, z)
diff(C(z), z)*D[1](P)(z, C(z)) + D[0](P)(z, C(z)) == 0

or, in a more readable format,

dC(z)
dz

∂P

∂y
(z, C(z)) + ∂P

∂x
(z, C(z)) = 0.

From this we deduce:
dC(z)
dz

= −
∂P
∂x
∂P
∂y

(z, C(z)) .

In the case of complete binary trees, this gives:

sage: P = y^2 - y + x; Px = diff(P, x); Py = diff(P, y)
sage: - Px / Py
-1/(2*y - 1)

Recall that P (z, C(z)) = 0. Thus, we can calculate this fraction mod P and, in
this way, express the derivative of C(z) as a polynomial in C(z) with coefficients in
Q(z). In order to achieve this, we construct the quotient ring R = Q(x)[y]/(P ):

sage: Qx = QQ['x'].fraction_field(); Qxy = Qx['y']
sage: R = Qxy.quo(P); R
Univariate Quotient Polynomial Ring in ybar
over Fraction Field of Univariate Polynomial Ring in x
over Rational Field with modulus y^2 - y + x
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Note: ybar is the name of the variable y in the quotient ring; for more information
on quotient rings, see §7.2.2. We continue the calculation of this fraction in R:

sage: fraction = - R(Px) / R(Py); fraction
(1/2/(x - 1/4))*ybar - 1/4/(x - 1/4)

We lift the result to Q(x)[y] and then substitute z and C(z) to obtain an expression
for d

dzC(z):
sage: fraction = fraction.lift(); fraction
(1/2/(x - 1/4))*y - 1/4/(x - 1/4)
sage: fraction(x=z, y=C)
2*C(z)/(4*z - 1) - 1/(4*z - 1)

or, more legibly,
∂C(z)
∂z

= 1
1− 4z −

2
1− 4zC(z) .

In this simple case, we can directly deduce from this expression a linear differential
equation with coefficients in Q[z]:

sage: equadiff = diff(C,z) == fraction(x=z, y=C); equadiff
diff(C(z), z) == 2*C(z)/(4*z - 1) - 1/(4*z - 1)
sage: equadiff = equadiff.simplify_rational()
sage: equadiff = equadiff * equadiff.rhs().denominator()
sage: equadiff = equadiff - equadiff.rhs()
sage: equadiff
(4*z - 1)*diff(C(z), z) - 2*C(z) + 1 == 0

or, more legibly,
(1− 4z)∂C(z)

∂z
+ 2C(z)− 1 = 0 .

It is trivial to verify this equation on the closed form:

sage: Cf = sage.symbolic.function_factory.function('C')
sage: bool(equadiff.substitute_function(Cf, lambda z: s0(z=z)))
True

In the general case, one continues to calculate successive derivatives of C(z).
These derivatives are confined to the quotient ring Q(z)[C]/(P ), which is of finite
dimension degP over Q(z). Therefore, one will eventually find a linear relation
among the first degP derivatives of C(z). Putting it over a single denominator,
we obtain a linear differential equation of degree ≤ degP with coefficients in Q[z].
By extracting the coefficient of zn in the differential equation, we obtain the
desired recurrence relation on the coefficients; in this case we recover the relation
we had already found, based on the closed form:

cn+1 = 4n− 2
n+ 1 cn.

After fixing the correct initial conditions, it becomes possible to calculate the
coefficients of C(z) recursively:
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sage: def C(n): return n if n <= 1 else (4*n-6)/n * C(n-1)
sage: [ C(i) for i in range(10) ]
[0, 1, 1, 2, 5, 14, 42, 132, 429, 1430]

If n is too large for the explicit calculation of cn, a sequence asymptotically
equivalent to the sequence of coefficients cn may be sought. Here again, there are
generic techniques. The central tool is complex analysis, specifically, the study
of the generating function around its singularities. In the present instance, the
singularity is at z0 = 1/4 and one would obtain cn ∼ 4n−1

n3/2√π .

Summary. We see here a general phenomenon of computer algebra: the best
data structure to describe a complicated mathematical object (a real number, a
sequence, a formal power series, a function, a set) is often an equation defining
the object (or a system of equations, typically with some initial conditions).
Attempting to find a closed-form solution to this equation is not necessarily of
interest: on the one hand, such a closed form rarely exists (e.g., the problem of
solving a polynomial by radicals), and on the other hand, the equation, in itself,
contains all necessary information to calculate algorithmically the properties of
the object under consideration (e.g., a numerical approximation, the initial terms
or elements, an asymptotic equivalent), or to calculate with the object itself
(e.g., performing arithmetic on power series). Therefore, instead of solving the
equation, we look for the equation that describes the object and is best suited to
the problem we want to solve; see also §2.2.2.

As we saw in our example, confinement (for example, in a finite dimensional
vector space) is a fundamental tool for studying such equations. This notion of
confinement is widely applicable in elimination techniques (linear algebra, Gröbner
bases, and their algebraic-differential generalisations). The same tool is central
in algorithms for automatic summation and automatic verification of identities
(Gosper’s algorithm, Zeilberger’s algorithm, and their generalisations [PWZ96];
see also the examples in §2.3.1 and Exercise 56).

All these techniques and their many generalisations are at the heart of very
active topics of research: automatic combinatorics and analytic combinatorics,
with major applications in the analysis of algorithms [FS09]. It is likely, and
desirable, that they will be progressively implemented in Sage.

15.2 Common Enumerated Sets

15.2.1 First Example: Subsets of a Set
Fix a set E of size n and consider the subsets of E of size k. We know that
these subsets are counted by the binomial coefficients

(
n
k

)
. We can therefore

calculate the number of subsets of size k = 2 of E = {1, 2, 3, 4} with the function
binomial:

sage: binomial(4, 2)
6
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Alternatively, we can construct the set P2(E) of all subsets of size 2 of E,
then ask for its cardinality:

sage: S = Subsets([1,2,3,4], 2); S.cardinality()
6

Once S has been constructed, we can also obtain the list of its elements, select
an element at random, or request a typical element:

sage: S.list()
[{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}]
sage: S.random_element()
{1, 4}
sage: S.an_element()
{2, 3}

More precisely, the object S models the set P2(E) equipped with a fixed order
(here, lexicographic order). It is therefore possible to ask for its 5-th element,
keeping in mind that, as with Python lists, the first element is numbered zero.
(As a shortcut, in this setting, one can also use the notation S[.].)

sage: S.unrank(4)
{2, 4}
sage: S[4]
{2, 4}

This should be used with care because some sets have a natural indexing other
than by (0, . . . ).

Conversely, one can calculate the position of an object in this order:

sage: s = S([2,4]); S.rank(s)
4

Note that S is not the list of its elements. One can, for example, model the
set P(P(P(E))) and calculate its cardinality (2224

):

sage: E = Set([1,2,3,4])
sage: S = Subsets(Subsets(Subsets(E))); S.cardinality()
2003529930406846464979072351560255750447825475569751419265016...736

which is roughly 2 · 1019728:

sage: S.cardinality().ndigits()
19729

or ask for its 237102124-th element:

sage: S.unrank(237102123)
{{{2, 4}, {1, 4}, {}, {1, 3, 4}, {1, 2, 4}, {4}, {2, 3}, {1, 3}, {2}},
{{1, 3}, {2, 4}, {1, 2, 4}, {}, {3, 4}}}
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It would be physically impossible to construct explicitly all elements of S, as
there are many more of them than there are particles in the universe (estimated
at 1082).

Remark: it would be natural in Python to use len(S) to ask for the cardinality
of S. This is not possible because Python requires that the result of len be an
integer of type int; this could cause overflows, and would not permit the return
of Infinity for infinite sets.

sage: len(S)
Traceback (most recent call last):
...
OverflowError: Python int too large to convert to C long

15.2.2 Integer Partitions
We now consider another classic problem: given a positive integer n, in how many
ways can it be written as a sum n = i1 + i2 + · · ·+ i` of positive integers? There
are two cases to distinguish:

• the order of the elements in the sum is not important, in which case we call
(i1, . . . , i`) a partition of n;

• the order of the elements in the sum is important, in which case we call
(i1, . . . , i`) a composition of n.

We begin with the partitions of n = 5; as before, we first construct the set of
these partitions:

sage: P5 = Partitions(5); P5
Partitions of the integer 5

then we ask for its cardinality:
sage: P5.cardinality()
7

We look at these 7 partitions; the order being irrelevant, the entries are ordered,
by convention, in decreasing order.

sage: P5.list()
[[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1],
[1, 1, 1, 1, 1]]

The calculation of the number of partitions uses the Rademacher formula
(see http://en.wikipedia.org/wiki/Partition_(number_theory)), implemented
in C and highly optimised, which makes it very fast:

sage: Partitions(100000).cardinality()
2749351056977569651267751632098635268817342931598005475820312598430214
7328114964173055050741660736621590157844774296248940493063070200461792
7644930335101160793424571901557189435097253124661084520063695589344642
4871682878983218234500926285383140459702130713067451062441922731123899
9702284408609370935531629697851569569892196108480158600569421098519

http://en.wikipedia.org/wiki/Partition_(number_theory)
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Partitions of integers are combinatorial objects naturally equipped with many
operations. They are therefore returned as objects that are richer than simple
lists.

sage: P7 = Partitions(7); p = P7.unrank(5); p
[4, 2, 1]

sage: type(p)
<class 'sage.combinat.partition.Partitions_n_with_category.element_class

'>

For example, they can be represented graphically by a Ferrers diagram:

sage: print(p.ferrers_diagram())
****
**
*

We leave it to the user to explore by introspection the available operations.
Note that we can also construct a partition directly by:

sage: Partition([4,2,1])
[4, 2, 1]
sage: P7([4,2,1])
[4, 2, 1]

If one wants to restrict the possible values of the parts i1, . . . , i` of the partition,
as, for example, when giving change, one can use WeightedIntegerVectors. For
example, the following calculation:

sage: WeightedIntegerVectors(8, [2,3,5]).list()
[[0, 1, 1], [1, 2, 0], [4, 0, 0]]

shows that to make 8 dollars using $2, $3, and $5 bills, one can use a $3 and a
$5, or a $2 and two $3’s, or four $2’s.

Compositions of integers are manipulated in the same way:

sage: C5 = Compositions(5); C5
Compositions of 5
sage: C5.cardinality()
16
sage: C5.list()
[[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 1], [1, 1, 3],
[1, 2, 1, 1], [1, 2, 2], [1, 3, 1], [1, 4], [2, 1, 1, 1],
[2, 1, 2], [2, 2, 1], [2, 3], [3, 1, 1], [3, 2], [4, 1], [5]]

The number 16 above seems significant and suggests the existence of a formula.
We look at the number of compositions of n ranging from 0 to 9:

sage: [ Compositions(n).cardinality() for n in range(10) ]
[1, 1, 2, 4, 8, 16, 32, 64, 128, 256]
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Similarly, if we consider the number of compositions of 5 by length, we find a line
of Pascal’s triangle:

sage: x = var('x'); sum( x^len(c) for c in C5 )
x^5 + 4*x^4 + 6*x^3 + 4*x^2 + x

The above example uses a functionality that we have not seen yet: C5 being
iterable, it can be used like a list in a for loop or a comprehension (§15.2.4).

Exercise 54. Prove the formulas suggested by the above examples for the number
of compositions of n and the number of compositions of n of length k; investigate by
introspection whether Sage uses these formulas for calculating cardinalities.

15.2.3 Some Other Finite Enumerated Sets
Essentially, the principle is the same for all finite sets with which one wants to do
combinatorics in Sage; begin by constructing an object that models this set, and
then supply appropriate methods, following a uniform interface1. We now give a
few more typical examples.

Intervals of integers:

sage: C = IntegerRange(3, 21, 2); C
{3, 5, ..., 19}
sage: C.cardinality()
9
sage: C.list()
[3, 5, 7, 9, 11, 13, 15, 17, 19]

Permutations:

sage: C = Permutations(4); C
Standard permutations of 4
sage: C.cardinality()
24
sage: C.list()
[[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2],
[1, 4, 2, 3], [1, 4, 3, 2], [2, 1, 3, 4], [2, 1, 4, 3],
[2, 3, 1, 4], [2, 3, 4, 1], [2, 4, 1, 3], [2, 4, 3, 1],
[3, 1, 2, 4], [3, 1, 4, 2], [3, 2, 1, 4], [3, 2, 4, 1],
[3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 2, 3], [4, 1, 3, 2],
[4, 2, 1, 3], [4, 2, 3, 1], [4, 3, 1, 2], [4, 3, 2, 1]]

Set partitions:

sage: C = SetPartitions([1,2,3]); C
Set partitions of {1, 2, 3}
sage: C.cardinality()
5
sage: C.list()

1Or at least that should be the case; there are still many corners to clean up.
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Figure 15.2 – A poset on 8 vertices.

[{{1, 2, 3}}, {{1}, {2, 3}}, {{1, 3}, {2}}, {{1, 2}, {3}}, {{1}, {2},
{3}}]

Partial orders (posets) on a set of 8 elements, up to isomorphism:

sage: C = Posets(8); C
Posets containing 8 elements
sage: C.cardinality()
16999

Let us draw one of these posets (see Figure 15.2):

sage: show(C.unrank(20))

One can iterate through all graphs up to isomorphism. For example, there
are 34 simple graphs with 5 vertices (Figure 15.3):

sage: len(list(graphs(5)))
34

Here is how to draw all those with at most 4 edges (see Figure 15.3):

sage: for g in graphs(5, lambda G: G.size() <= 4):
....: show(g)

However, the set C of these graphs is not yet available in Sage; as a result, the
following commands are not yet implemented:

sage: C = Graphs(5); C.cardinality()
34
sage: Graphs(19).cardinality()
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Figure 15.3 – The simple graphs with 5 vertices and at most 4 edges.

24637809253125004524383007491432768
sage: Graphs(19).random_element()
Graph on 19 vertices

What we have seen so far also applies, in principle, to finite algebraic structures
like the dihedral groups:

sage: G = DihedralGroup(4); G
Dihedral group of order 8 as a permutation group
sage: G.cardinality()
8
sage: G.list()
[(), (1,4)(2,3), (1,2,3,4), (1,3)(2,4), (1,3), (2,4), (1,4,3,2), (1,2)

(3,4)]

or the algebra of 2× 2 matrices over the finite field Z/2Z:

sage: C = MatrixSpace(GF(2), 2); C.list()
[
[0 0] [1 0] [0 1] [0 0] [0 0] [1 1] [1 0] [1 0] [0 1]
[0 0], [0 0], [0 0], [1 0], [0 1], [0 0], [1 0], [0 1], [1 0],
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[0 1] [0 0] [1 1] [1 1] [1 0] [0 1] [1 1]
[0 1], [1 1], [1 0], [0 1], [1 1], [1 1], [1 1]
]

sage: C.cardinality()
16

Exercise 55. List all monomials of degree 5 in three variables (see IntegerVectors).
Manipulate the ordered set partitions OrderedSetPartitions and standard tableaux
(StandardTableaux).

Exercise 56. List the alternating sign matrices of size 3, 4, and 5, and try to guess
the definition (see AlternatingSignMatrices). The discovery and proof of the formula
for the enumeration of these matrices (see the method cardinality), motivated by
calculations of determinants in physics, is quite a story. In particular, the first proof,
given by Zeilberger in 1992 was automatically produced by a computer program. It was
84 pages long, and required nearly a hundred people to verify it [Zei96].

Exercise 57. Calculate by hand the number of vectors in (Z/2Z)5, and the number
of matrices in GL3(Z/2Z) (that is to say, the number of invertible 3× 3 matrices with
coefficients in Z/2Z). Verify your answer with Sage. Generalise to GLn(Z/qZ).

15.2.4 Set Comprehension and Iterators
We will now show some of the possibilities offered by Python for constructing
(and iterating through) sets, with a notation that is flexible and close to usual
mathematical usage, and in particular the benefits this yields in combinatorics.

We begin by constructing the finite set {i2 | i ∈ {1, 3, 7}}:

sage: [ i^2 for i in [1, 3, 7] ]
[1, 9, 49]

and then the same set, but with i running from 1 to 9:

sage: [ i^2 for i in range(1,10) ]
[1, 4, 9, 16, 25, 36, 49, 64, 81]

A Python construction of this form is called set comprehension. A clause can be
added to keep only those elements with i prime:

sage: [ i^2 for i in range(1,10) if is_prime(i) ]
[4, 9, 25, 49]

Combining more than one set comprehension, it is possible to construct the
set {(i, j) | 1 ≤ j < i < 6}:

sage: [ (i,j) for i in range(1,6) for j in range(1,i) ]
[(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3),
(5, 1), (5, 2), (5, 3), (5, 4)]

or to produce Pascal’s triangle:

sage: [[binomial(n, i) for i in range(n+1)] for n in range(10)]
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[[1],
[1, 1],
[1, 2, 1],
[1, 3, 3, 1],
[1, 4, 6, 4, 1],
[1, 5, 10, 10, 5, 1],
[1, 6, 15, 20, 15, 6, 1],
[1, 7, 21, 35, 35, 21, 7, 1],
[1, 8, 28, 56, 70, 56, 28, 8, 1],
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]]

The execution of a set comprehension is accomplished in two steps; first an
iterator is constructed, and then a list is filled with the elements successively
produced by the iterator. Technically, an iterator is an object with a method
next that returns a new value each time it is called, until it is exhausted. For
example, the following iterator it:

sage: it = (binomial(3, i) for i in range(4))

returns successively the binomial coefficients
(3
i

)
with i = 0, 1, 2, 3:

sage: it.next()
1
sage: it.next()
3
sage: it.next()
3
sage: it.next()
1

When the iterator is finally exhausted, an exception is raised:
sage: it.next()
Traceback (most recent call last):
...

StopIteration

More generally, an iterable is a Python object L (a list, a set, . . . ) over whose
elements it is possible to iterate. Technically, the iterator is constructed by
iter(L). In practice, the commands iter and next are used very rarely, since
for loops and list comprehensions provide a much more pleasant syntax:

sage: for s in Subsets(3): s
{}
{1}
{2}
{3}
{1, 2}
{1, 3}
{2, 3}
{1, 2, 3}
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sage: [ s.cardinality() for s in Subsets(3) ]
[0, 1, 1, 1, 2, 2, 2, 3]

What is the point of an iterator? Consider the following example:
sage: sum( [ binomial(8, i) for i in range(9) ] )
256

When it is executed, a list of 9 elements is constructed, and then it is passed as
an argument to sum to add them up. If, on the other hand, the iterator is passed
directly to sum (note the absence of square brackets):

sage: sum( binomial(8, i) for i in xrange(9) )
256

the function sum receives the iterator directly, and can short-circuit the con-
struction of the intermediate list. If there is a large number of elements, this
avoids allocating a large quantity of memory to fill a list that will be immediately
destroyed2.

Most functions that take a list of elements as input will also accept an iterator
(or an iterable) instead. To begin with, one can obtain the list (or the tuple) of
elements of an iterator as follows:

sage: list(binomial(8, i) for i in xrange(9))
[1, 8, 28, 56, 70, 56, 28, 8, 1]
sage: tuple(binomial(8, i) for i in xrange(9))
(1, 8, 28, 56, 70, 56, 28, 8, 1)

We now consider the functions all and any, which denote respectively the
n-ary and and or :

sage: all([True, True, True, True])
True
sage: all([True, False, True, True])
False
sage: any([False, False, False, False])
False
sage: any([False, False, True, False])
True

The following example verifies that all primes from 3 to 99 are odd:
sage: all( is_odd(p) for p in xrange(3,100) if is_prime(p) )
True

A Mersenne prime is a prime of the form 2p− 1. We verify that, for p < 1000,
if 2p − 1 is prime, then p is also prime:

sage: def mersenne(p): return 2^p - 1
sage: [ is_prime(p) for p in range(1000) if is_prime(mersenne(p)) ]

2Technical detail: xrange returns an iterator on {0, . . . , 8} while range returns the corre-
sponding list. Starting in Python 3.0, range will behave like xrange, and xrange will no longer
be needed.
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[True, True, True, True, True, True, True, True, True, True,
True, True, True, True]

Is the converse true?
Exercise 58. Try the two following commands and explain the considerable differ-

ence in the length of the calculations:

sage: all( [ is_prime(mersenne(p)) for p in range(1000) if is_prime(p)] )
False
sage: all( is_prime(mersenne(p)) for p in range(1000) if is_prime(p) )
False

We now try to find the smallest counter-example. In order to do this, we use
the Sage function exists:

sage: exists( (p for p in range(1000) if is_prime(p)),
....: lambda p: not is_prime(mersenne(p)) )
(True, 11)

Alternatively, we could construct an iterator on the counter-examples:
sage: counter_examples = \
....: (p for p in range(1000)
....: if is_prime(p) and not is_prime(mersenne(p)))
sage: counter_examples.next()
11
sage: counter_examples.next()
23

Exercise 59. What do the following commands do?

sage: cubes = [t**3 for t in range(-999,1000)]
sage: exists([(x,y) for x in cubes for y in cubes], lambda (x,y): x+y == 218)
sage: exists(((x,y) for x in cubes for y in cubes), lambda (x,y): x+y == 218)

Which of the last two is more economical in terms of time? In terms of memory? By
how much?

Exercise 60. Try each of the following commands, and explain the results. Warning:
it will be necessary to interrupt the execution of some of them.

sage: x = var('x'); sum( x^len(s) for s in Subsets(8) )

sage: sum( x^p.length() for p in Permutations(3) )

sage: P = Permutations(5)
sage: all( p in P for p in P )

sage: for p in GL(2, 2): print(p); print("-----")

sage: for p in Partitions(3): print(p)

sage: for p in Partitions(): print(p)

sage: for p in Primes(): print(p)
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sage: exists( Primes(), lambda p: not is_prime(mersenne(p)) )

sage: counter_examples = (p for p in Primes()
....: if not is_prime(mersenne(p)))
sage: for p in counter_examples: print(p)

Operations on Iterators. Python provides numerous tools for manipulating
iterators; most of them are in the itertools library, which can be imported by:

sage: import itertools

We will demonstrate some applications, taking as a starting point the permutations
of 3:

sage: list(Permutations(3))
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

We can list the elements of a set by numbering them:
sage: list(enumerate(Permutations(3)))
[(0, [1, 2, 3]), (1, [1, 3, 2]), (2, [2, 1, 3]),
(3, [2, 3, 1]), (4, [3, 1, 2]), (5, [3, 2, 1])]

select only the elements in positions 2, 3, and 4 (analogue of l[1:4]):
sage: list(itertools.islice(Permutations(3), 1, 4))
[[1, 3, 2], [2, 1, 3], [2, 3, 1]]

apply a function to all elements:
sage: list(itertools.imap(lambda z: z.cycle_type(), Permutations(3)))
[[1, 1, 1], [2, 1], [2, 1], [3], [3], [2, 1]]

or select the elements satisfying a certain condition:
sage: list(itertools.ifilter(lambda z: z.has_pattern([1,2]),
....: Permutations(3)))
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]]

In all these situations, attrcall can be an advantageous alternative to creating
an anonymous function:

sage: list(itertools.imap(attrcall("cycle_type"), Permutations(3)))
[[1, 1, 1], [2, 1], [2, 1], [3], [3], [2, 1]]

Implementation of New Iterators. It is easy to construct new iterators,
using the keyword yield instead of return in a function:

sage: def f(n):
....: for i in range(n):
....: yield i

After the yield, execution is not halted, but only suspended, ready to be continued
from the same point. The result of the function is therefore an iterator over the
successive values returned by yield:
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sage: g = f(4)
sage: g.next()
0
sage: g.next()
1
sage: g.next()
2
sage: g.next()
3

sage: g.next()
Traceback (most recent call last):
...

StopIteration

The function could be used as follows:
sage: [ x for x in f(5) ]
[0, 1, 2, 3, 4]

This model of computation, called continuation, is very useful in combinatorics,
especially when combined with recursion. (See also §12.2.2 for other applications.)
Here is how to generate all words of a given length on a given alphabet:

sage: def words(alphabet,l):
....: if l == 0: yield []
....: else:
....: for word in words(alphabet, l-1):
....: for l in alphabet: yield word + [l]
sage: [ w for w in words(['a','b'], 3) ]
[['a', 'a', 'a'], ['a', 'a', 'b'], ['a', 'b', 'a'], ['a', 'b', 'b'],
['b', 'a', 'a'], ['b', 'a', 'b'], ['b', 'b', 'a'], ['b', 'b', 'b']]

These words can then be counted by:
sage: sum(1 for w in words(['a','b','c','d'], 10))
1048576

Counting the words one by one is clearly not an efficient method in this case,
since the formula n` is also available; note, though, that this is not the stupidest
possible approach — it does, at least, avoid constructing the entire list in memory.

We now consider Dyck words, which are well-parenthesised words in the letters
“(” and “)”. The function below generates all Dyck words of a given length (where
the length is the number of pairs of parentheses), using the recursive definition
which says that a Dyck word is either empty or of the form (w1)w2 where w1 and
w2 are Dyck words:

sage: def dyck_words(l):
....: if l == 0: yield ''
....: else:
....: for k in range(l):



15.3. CONSTRUCTIONS 349

....: for w1 in dyck_words(k):

....: for w2 in dyck_words(l-k-1):

....: yield '(' + w1 + ')' + w2

Here are all Dyck words of length 4:
sage: list(dyck_words(4))
['()()()()', '()()(())', '()(())()', '()(()())', '()((()))',
'(())()()', '(())(())', '(()())()', '((()))()', '(()()())',
'(()(()))', '((())())', '((()()))', '(((())))']

Counting them, we recover a well-known sequence:
sage: [ sum(1 for w in dyck_words(l)) for l in range(10) ]
[1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]

Exercise 61. Construct an iterator on the set Cn of complete binary trees with n
leaves (see §15.1.2).

Indication: use BinaryTree; in the example below, we construct a leaf and the
second tree of Figure 15.1.

sage: BT = BinaryTree
sage: BT()
.
sage: t = BT([BT([BT(), BT([BT(),BT()])]), BT()]); t
[[., [., .]], .]

Beware that, when drawing a complete binary tree, Sage uses the classical convention of
displaying only its skeleton, that is the tree with its leaves pruned:

sage: view(t)

15.3 Constructions
We now see how to construct new sets starting from these building blocks. In fact,
we have already begun to do this with the construction of P(P(P({1, 2, 3, 4})))
in the previous section, and the example of sets of cards in §15.1.

Consider a large Cartesian product:
sage: C = cartesian_product([Compositions(8), Permutations(20)]); C
The Cartesian product of (Compositions of 8, Standard permutations of

20)
sage: C.cardinality()
311411457046609920000

Clearly, it is impractical to construct the list of all elements of this Cartesian
product. One can nevertheless manipulate it, for example to generate a random
element:
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sage: C.random_element()
([2, 3, 2, 1], [10, 6, 11, 13, 14, 3, 4, 19, 5, 12, 7, 18, 15, 8, 20, 1,

17, 2, 9, 16])

The construction cartesian_product knows the algebraic properties of its
arguments. Therefore, in the following example, H is equipped with the usual
combinatorial operations and also its structure as a product group.

sage: G = DihedralGroup(4)
sage: H = cartesian_product([G,G])
sage: H.cardinality()
64
sage: H in Sets().Enumerated().Finite()
True
sage: H in Groups()
True

We now construct the disjoint union of two existing sets:
sage: C = DisjointUnionEnumeratedSets([Compositions(4),Permutations(3)])
sage: C
Disjoint union of Family (Compositions of 4, Standard permutations of 3)
sage: C.cardinality()
14
sage: C.list()
[[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3], [2, 1, 1], [2, 2], [3, 1],
[4], [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

It is also possible to take the union of more than two disjoint sets, or even an
infinite number of them. We will now construct the set of all permutations, viewed
as the union of the sets Pn of permutations of size n. We begin by constructing
the infinite family F = (Pn)n∈N :

sage: F = Family(NonNegativeIntegers(), Permutations); F
Lazy family (<class 'sage.combinat.permutation.Permutations'>(i))_{i in

Non negative integers}
sage: F.keys()
Non negative integers
sage: F[1000]
Standard permutations of 1000

Now we can construct the disjoint union
⋃
n∈N Pn:

sage: U = DisjointUnionEnumeratedSets(F); U
Disjoint union of
Lazy family (<class 'sage.combinat.permutation.Permutations'>(i))_{i in

Non negative integers}

It is an infinite set:
sage: U.cardinality()
+Infinity
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which does not prohibit iteration through its elements, though it will be necessary
to interrupt it at some point:

sage: for p in U: p
[]
[1]
[1, 2]
[2, 1]
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
...

Note: the above set could also have been constructed directly with:

sage: U = Permutations(); U
Standard permutations

Summary. To summarise, Sage provides a library of common enumerated sets,
which can be combined via standard constructions, giving a toolbox that is flexible
(but that could still be expanded). It is also possible to add new building blocks
to Sage with a few lines (see the code in Sets().Enumerated().Finite()). This
is made possible by the uniformity of the interfaces and the fact that Sage is
based on an object-oriented language. Also, very large or even infinite sets can
be manipulated thanks to lazy evaluation strategies (iterators, etc.).

There is no magic to any of this: under the hood, Sage applies the usual
rules (for example, that the cardinality of E × E is |E|2); the added value comes
from the capacity to manipulate complicated constructions. The situation is
comparable to Sage’s implementation of differential calculus: Sage applies the
usual rules for differentiation of functions and their compositions, where the added
value comes from the possibility of manipulating complicated formulas. In this
sense, Sage implements a calculus of finite enumerated sets.

15.4 Generic Algorithms
15.4.1 Lexicographic Generation of Lists of Integers
Among the classic enumerated sets, especially in algebraic combinatorics, a
certain number are composed of lists of integers of fixed sum, such as partitions,
compositions, or integer vectors. These examples can also have further constraints
added to them. Here are some examples. We start with the integer vectors with
sum 10 and length 3, with parts bounded below by 2, 4 and 2 respectively:

sage: IntegerVectors(10, 3, min_part = 2, max_part = 5,
....: inner = [2, 4, 2]).list()
[[4, 4, 2], [3, 5, 2], [3, 4, 3], [2, 5, 3], [2, 4, 4]]
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The compositions of 5 with each part at most 3, and with length 2 or 3:

sage: Compositions(5, max_part = 3,
....: min_length = 2, max_length = 3).list()
[[3, 2], [3, 1, 1], [2, 3], [2, 2, 1], [2, 1, 2], [1, 3, 1],
[1, 2, 2], [1, 1, 3]]

The strictly decreasing partitions of 5:

sage: Partitions(5, max_slope = -1).list()
[[5], [4, 1], [3, 2]]

These sets share the same underlying algorithmic structure, implemented in the
more general — and slightly more cumbersome — class IntegerListsLex. This
class models sets of vectors (`0, . . . , `k) of non-negative integers, with constraints
on the sum and the length, and bounds on the parts and on the consecutive
differences between the parts. Here are some more examples:

sage: IntegerListsLex(10, length=3, min_part = 2, max_part = 5,
....: floor = [2, 4, 2]).list()
[[4, 4, 2], [3, 5, 2], [3, 4, 3], [2, 5, 3], [2, 4, 4]]

sage: IntegerListsLex(5, min_part = 1, max_part = 3,
....: min_length = 2, max_length = 3).list()
[[3, 2], [3, 1, 1], [2, 3], [2, 2, 1], [2, 1, 2], [1, 3, 1],
[1, 2, 2], [1, 1, 3]]

sage: IntegerListsLex(5, min_part = 1, max_slope = -1).list()
[[5], [4, 1], [3, 2]]

sage: list(Compositions(5, max_length=2))
[[5], [4, 1], [3, 2], [2, 3], [1, 4]]

sage: list(IntegerListsLex(5, max_length=2, min_part=1))
[[5], [4, 1], [3, 2], [2, 3], [1, 4]]

The point of the model of IntegerListsLex is in the good compromise
between generality and efficiency in the iteration. The main algorithm permits
iteration through the elements of such a set S in reverse lexicographic order, and
in Constant Amortised Time (CAT), except in very degenerate cases; roughly
speaking, the time needed to iterate through all elements is proportional to
the number of elements, which is optimal. In addition, the memory usage is
proportional to the largest element found, which is to say negligible in practice.

This algorithm is based on a very general principle for traversing a decision
tree, called branch and bound: at the top level, we run through all possible choices
for `0; for each of these choices, we run through all possible choices for `1, and so
on. Mathematically speaking, we have put the structure of a prefix tree on the
elements of S: a node of the tree at depth k corresponds to a prefix `0, . . . , `k of
one (or more) elements of S (see Figure 15.4).
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Figure 15.4 – The prefix tree of the partitions of 5.

The usual problem with this type of approach is to avoid bad decisions that lead
to leaving the prefix tree and exploring dead branches, particularly problematic
because the growth of the number of elements is exponential in the depth. It turns
out that the constraints listed above are simple enough to guarantee the following
property: given a prefix `0, . . . , `k of S, the set of `k+1 such that `0, . . . , `k+1 is a
prefix of S is either empty or consists of an interval [a, b], and the bounds a and
b can be calculated in time linear in the length of the longest element of S having
`0, . . . , `k as a prefix.

15.4.2 Integer Points in Polytopes
Although the algorithm for iteration in IntegerListsLex is efficient, its counting
algorithm is naive: it just iterates over all the elements.

There is an alternative approach to this problem: modelling the desired lists
of integers as the set of integer points of a polytope, that is to say, the set of
solutions with integer coordinates of a system of linear inequalities. This is a
very general context in which there exist advanced counting algorithms (e.g.,
Barvinok), which are implemented in libraries like LattE. Iteration does not pose
a hard problem in principle. However, there are two limitations that justify
the existence of IntegerListsLex. The first is theoretical: lattice points in a
polytope only allow modelling of problems of a fixed dimension (length). The
second is practical: at the moment only the library PALP has a Sage interface,
and though it offers multiple capabilities for the study of polytopes, in the present
application it only produces a list of lattice points, without providing either an
iterator or non-naive counting:

sage: A = random_matrix(ZZ, 6, 3, x=7)
sage: L = LatticePolytope(A.rows())
sage: L.points()
M(1, 4, 3),
M(6, 4, 1),
...
M(3, 5, 5)
in 3-d lattice M
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sage: L.points().cardinality()
23

Here is how to draw this polytope in 3D (see Figure 15.5):
sage: L.plot3d()

Figure 15.5 – The polytope L and its integer points, in cross-eyed stereographic perspec-
tive.

15.4.3 Species, Decomposable Combinatorial Classes
In §15.1.2, we showed how to use the recursive definition of binary trees to count
them efficiently using generating functions. The techniques we used there are
very general, and apply whenever the sets involved can be defined recursively
(depending on who you ask, such a set is called a decomposable combinatorial
class or, roughly speaking, a combinatorial species). This includes all types of
trees, and also permutations, compositions, block diagrams, etc.

Here, we illustrate just a few examples using the Sage library on combinatorial
species:

sage: from sage.combinat.species.library import *
sage: o = var('o')

We begin by redefining the complete binary trees; to do so, we stipulate the
recurrence relation directly on the sets:

sage: BT = CombinatorialSpecies()
sage: Leaf = SingletonSpecies()
sage: BT.define( Leaf + (BT*BT) )

Now we can construct the set of trees with five nodes, list them, count them...:
sage: BT5 = BT.isotypes([o]*5); BT5.cardinality()
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14
sage: BT5.list()
[o*(o*(o*(o*o))), o*(o*((o*o)*o)), o*((o*o)*(o*o)), o*((o*(o*o))*o),
o*(((o*o)*o)*o), (o*o)*(o*(o*o)), (o*o)*((o*o)*o), (o*(o*o))*(o*o),
((o*o)*o)*(o*o), (o*(o*(o*o)))*o, (o*((o*o)*o))*o, ((o*o)*(o*o))*o,
((o*(o*o))*o)*o, (((o*o)*o)*o)*o]

The trees are constructed using a generic recursive structure; the display is
therefore not wonderful. To do better, it would be necessary to provide Sage with
a more specialised data structure with the desired display capabilities.

We recover the generating function for the Catalan numbers:

sage: g = BT.isotype_generating_series(); g
x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + O(x^6)

which is returned in the form of a lazy power series:

sage: g[100]
227508830794229349661819540395688853956041682601541047340

We finish with the Fibonacci words, which are binary words without two
consecutive “1”s. They admit a natural recursive definition:

sage: Eps = EmptySetSpecies(); Z0 = SingletonSpecies()
sage: Z1 = Eps*SingletonSpecies()
sage: FW = CombinatorialSpecies()
sage: FW.define(Eps + Z0*FW + Z1*Eps + Z1*Z0*FW)

The Fibonacci sequence is easily recognised here, hence the name:

sage: L = FW.isotype_generating_series().coefficients(15); L
[1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

sage: oeis(L)
0: A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and

F(1) = 1.
1: A212804: Expansion of (1-x)/(1-x-x^2).
2: A132636: a(n) = Fibonacci(n) mod n^3.

This is an immediate consequence of the recurrence relation. One can also generate
immediately all Fibonacci words of a given length, with the same limitations
resulting from the generic display.

sage: FW3 = FW.isotypes([o]*3)
sage: FW3.list()
[o*(o*(o*{})), o*(o*(({}*o)*{})), o*((({}*o)*o)*{}),
(({}*o)*o)*(o*{}), (({}*o)*o)*(({}*o)*{})]

By replacing o by 0, {}*o by 1 and dropping parentheses as well as the last {},
one reads respectively 000, 001, 010, 100 and 101.
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15.4.4 Objects up to Isomorphism

We saw in §15.2.3 that Sage could generate graphs and partial orders up to
isomorphism. In this section, we describe two typical algorithms to, respectively,
generate and count objects up to isomorphism: orderly generation and Pólya
enumeration. Our running example will be unlabelled simple graphs.

Graphs up to Isomorphism. We begin by recalling some notions. A graph
G = (V,E) is a set V of vertices and a set E of edges connecting these vertices; an
edge is described by a pair {u, v} of distinct vertices of V . Such a graph is called
labelled; its vertices are typically numbered by considering V = {1, 2, . . . , n}.

In many problems, the labels on the vertices play no role. Typically a chemist
wants to study all possible molecules with a given composition, for example the
alkanes with N = 8 carbon atoms and 2N +2 = 18 hydrogen atoms. We therefore
want to find all (connected) graphs consisting of 8 vertices with 4 neighbours, and
18 vertices with a single neighbour. The different carbon atoms, however, are all
considered to be identical, and the same for the hydrogen atoms. Our chemist’s
problem is not artificial; this type of application is actually at the origin of an
important part of the research in graph theory on isomorphism problems.

When working by hand on a small graph it is possible, as in the example
of §15.2.3, to make a drawing, erase the labels, and “forget” the geometrical
information about the location of the vertices in the plane. However, to represent
a graph in a computer program, it is necessary to introduce labels on the vertices
so as to be able to describe how the edges connect them together. To compensate
for the extra information which we have introduced, we then say that two labelled
graphs g1 and g2 are isomorphic if there is a bijection from the vertices of g1 to
those of g2, which maps the edges of g1 bijectively to those of g2; an unlabelled
graph is then an equivalence class of labelled graphs.

Orderly Generation. We start with the algorithms behind the generation of
graphs up to isomorphism. In general, (graph) isomorphism problems are hard;
for example, testing if two labelled graphs are isomorphic is computationally
expensive. However, the number of graphs, even unlabelled, grows very rapidly,
and it turns out to be possible to list unlabelled graphs very efficiently considering
their number. For example, the program Nauty can list the 12005168 simple
graphs with 10 vertices in seconds.

As in §15.4.1, the general principle of the algorithm is to organise the objects
to be enumerated into a tree that one traverses.

For this, in each equivalence class of labelled graphs (that is to say, for each
unlabelled graph) one fixes a convenient canonical representative. The following
are the fundamental operations:

1. testing whether a labelled graph is canonical;

2. calculating the canonical representative of a labelled graph.
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Figure 15.6 – The generation tree of simple graphs with 4 vertices.

These unavoidable operations remain expensive; one therefore tries to minimise
the number of calls to them.

The canonical representatives are chosen in such a way that, for each canonical
labelled graph G, there is a canonical choice of an edge whose removal produces
another canonical labelled graph, which is called the father of G. This property
implies that it is possible to organise the canonical labelled graphs on a set V of
vertices as the nodes of a tree: at the root, the graph with no edges; below it, its
unique child, the graph with one edge; then the graphs with two edges, and so on.
The set of children of a graph G can be constructed by augmentation, adding an
edge in all possible ways to G, and then selecting, among those graphs, the ones
that are still canonical3. Recursively, one obtains all canonical graphs.

In what sense is this algorithm generic? Consider for example planar graphs
3In practice, an efficient implementation would exploit the symmetries of G, i.e., its auto-

morphism group, to reduce the number of children to explore, and to reduce the cost of each
test of canonicity.
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(graphs which can be drawn in the plane without edges crossing): by removing
an edge from a planar graph, one obtains another planar graph; so planar graphs
form a subtree of the previous tree. To generate them, exactly the same algorithm
can be used, selecting only the children that are planar:

sage: [len(list(graphs(n, property = lambda G: G.is_planar())))
....: for n in range(7)]
[1, 1, 2, 4, 11, 33, 142]

In a similar fashion, one can generate any family of graphs closed under edge-
deletion, and in particular any family characterised by forbidden subgraphs. This
includes for example forests (graphs without cycles), bipartite graphs (graphs
without odd cycles), etc. This approach can also be applied to generate:

• partial orders, via the bijection with Hasse diagrams (directed graphs
without cycles and without edges implied by the transitivity of the order
relation);

• lattices, via the bijection with the meet semi-lattice obtained by deleting
the maximal vertex; in this case an augmentation by vertices rather than
by edges is used.

Pólya Enumeration. We now count graphs on n vertices up to isomorphism,
using Pólya enumeration. We remain voluntarily brief and informal; the reader
is encouraged to focus on the examples to get an intuition of what is going on.
Our purpose is indeed merely to point to this gem of algebraic combinatorics that
connects enumerative combinatorics, group theory, symmetric functions, and in
fact even some representation theory. For details on the theory behind it, we
refer to https://en.wikipedia.org/wiki/Cycle_index.

As above, we fix V = {1, 2, . . . , n} as the set of vertices. In the examples, we
take n = 4. A labelled graph is now just a subset E of the collection F of the

(
n
2
)

pairs {i, j} of vertices:

sage: V = [1,2,3,4]
sage: F = Subsets(V, 2); F.list()
[{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}]

We take the group Sn of all permutations of V :

sage: S = SymmetricGroup(V)

We want to let Sn act on pairs in F . We start with a function that lets a single
permutation act on a pair:

sage: def on_pair(sigma, pair):
....: return Set(sigma(i) for i in pair)
sage: def on_pairs(sigma):
....: return [on_pair(sigma, e) for e in F]

Here it is in action:

sage: sigma = S.an_element(); sigma

https://en.wikipedia.org/wiki/Cycle_index
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(1,2,3,4)
sage: for e in F: print((e, on_pair(sigma, e)))
({1, 2}, {2, 3})
({1, 3}, {2, 4})
({1, 4}, {1, 2})
({2, 3}, {3, 4})
({2, 4}, {1, 3})
({3, 4}, {1, 4})
sage: on_pairs(sigma)
[{2, 3}, {2, 4}, {1, 2}, {3, 4}, {1, 3}, {1, 4}]

We can now construct the permutation group Gn acting on pairs, induced by
the action of Sn:

sage: G = PermutationGroup([ on_pairs(sigma) for sigma in S.gens() ],
....: domain=F)

We compute the cycle indicator of Gn next. This is a symmetric function that
encodes the statistic of the cycle types of the permutations in Gn:

sage: Z = G.cycle_index(); Z
1/24*p[1, 1, 1, 1, 1, 1] + 3/8*p[2, 2, 1, 1] + 1/3*p[3, 3] + 1/4*p[4, 2]

This gadget is to be interpreted as follows: the term 1
4p(4,2) indicates that, in G4,

there are |G4| · 1
4 = 6 permutations with one cycle of length 4 and one cycle of

length 2; indeed:
sage: [ sigma for sigma in G if sigma.cycle_type() == [4,2] ]
[({1,2},{2,3},{3,4},{1,4})({1,3},{2,4}),
({1,2},{2,4},{3,4},{1,3})({1,4},{2,3}),
({1,2},{1,3},{3,4},{2,4})({1,4},{2,3}),
({1,2},{1,4},{3,4},{2,3})({1,3},{2,4}),
({1,2},{3,4})({1,3},{1,4},{2,4},{2,3}),
({1,2},{3,4})({1,3},{2,3},{2,4},{1,4})]

The interesting fact about this symmetric function — and this is the content
of Pólya’s enumeration formula — is that, when evaluated on an alphabet A =
(a1, . . . , an), it returns the generating function by weight for the functions from
E to a set of size n whose elements are weighted by A. Skimming over the
terminology, we illustrate this on our running example. We see a graph G as a
function from F to a set with 2 elements, and weight edges with t and non edges
with q. The generating function of unlabelled graphs on 4 nodes by number of
edges is then:

sage: q,t = QQ['q,t'].gens()
sage: p = Z.expand(2, [q,t]); p
q^6 + q^5*t + 2*q^4*t^2 + 3*q^3*t^3 + 2*q^2*t^4 + q*t^5 + t^6

The term 2q2t4 means that there are two graphs with four edges (and thus two
non edges). The other coefficients can be checked with Figure 15.6. The total
number of unlabelled graphs is obtained by further evaluating p at q = t = 1:
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sage: p(q=1,t=1)
11

If we are interested in counting multigraphs (graphs with multiple edges) by
number of edges instead, the cycle indicator polynomial can be evaluated on
the infinite alphabet A = (1, q, q2, . . . ). Infinite alphabets are not yet directly
supported by Sage; however this can easily be done by hand since the evaluation
of the symmetric powersum pk on the alphabet A is obtained by encoding A as
1 + q + q2 + · · · = 1

1−q and substituting qk for q in this formula:

sage: q = var('q')
sage: H = sum( c * prod( 1/(1-q^k) for k in partition )
....: for partition, c in Z )
sage: H
1/3/(q^3 - 1)^2 + 1/4/((q^4 - 1)*(q^2 - 1))
+ 3/8/((q^2 - 1)̂ 2*(q - 1)̂ 2) + 1/24/(q - 1)^6

Now, the number of multigraphs with 0 to 19 edges can be obtained by Taylor
expansion:

sage: H.series(q)
1 + 1*q + 3*q^2 + 6*q^3 + 11*q^4 + 18*q^5 + 32*q^6 + 48*q^7
+ 75*q^8 + 111*q^9 + 160*q^10 + 224*q^11 + 313*q^12 + 420*q^13
+ 562*q^14 + 738*q^15 + 956*q^16 + 1221*q^17 + 1550*q^18 + 1936*q^19
+ Order(q^20)

The computation of the cycle index is carried out in a rather efficient way,
using group theory algorithms provided by GAP to reduce the calculation of the
cycle indicator to a summation over conjugacy classes of the group. The following
example counts in a few seconds the number of graphs on n = 10 nodes; in that
case, Gn contains 10! permutations acting on 45 edges:

sage: n = 10
sage: V = range(1,n+1)
sage: F = Subsets(V, 2)
sage: S = SymmetricGroup(V)
sage: G = PermutationGroup([ on_pairs(sigma) for sigma in S.gens() ],
....: domain=F)
sage: q,t = QQ['q,t'].gens()
sage: Z = G.cycle_index()
sage: Z.expand(2, [q,t])(q=1,t=1)
12005168

Most of the time is spent in computing the conjugacy classes of Gn. One
can go much further by exploiting the specific structure of the group: indeed
Gn is isomorphic to Sn, the conjugacy classes of which are indexed by integer
partitions:

sage: n = 20
sage: V = range(1,n+1)
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sage: F = Subsets(V, 2)
sage: S = SymmetricGroup(V)
sage: CC = S.conjugacy_classes(); CC
[...
Conjugacy class of cycle type [19, 1] in Symmetric group of order 20!

as a permutation group,
Conjugacy class of cycle type [20] in Symmetric group of order 20! as a

permutation group]

Now counting the number of graphs with 20 nodes takes just a few seconds:

sage: p = SymmetricFunctions(QQ).powersum()
sage: G = PermutationGroup([ on_pairs(sigma) for sigma in S.gens() ],
....: domain=F)
sage: Z = p.sum_of_terms([G(on_pairs(c.representative())).cycle_type(),
....: c.cardinality()]
....: for c in CC) / factorial(n)
sage: Z.expand(2, [q,t])(q=1,t=1)
645490122795799841856164638490742749440
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16
Graph Theory

This chapter presents the study of graph theory with Sage, starting with a
description of the Graph class (§16.1) and its methods (§16.2), then how to use
them to solve practical problems (§16.4) or verify theoretical results through
experimentation (§16.3).

16.1 Constructing Graphs
16.1.1 Starting from Scratch
We define a graph as a pair (V,E), where V represents a set of vertices and E a
set of edges, or unordered pairs of vertices. The graph shown in Figure 16.1 is
defined by the set of vertices {0, 1, 2, 5, 9, ’Madrid’, ’Edinburgh’} and has edges
(1, 2), (1, 5), (1, 9), (2, 5), (2, 9) as well as (’Madrid’, ’Edinburgh’).

It should come as no surprise that graphs in Sage are represented by the class
Graph:

sage: g = Graph()

By default, g is an empty graph. The next example demonstrates how to add
vertices and edges: whenever an edge is created, the corresponding vertices — if
they are not already present in the graph — are silently added. We can observe
this process with methods whose purpose is easy to guess:

sage: g.order(), g.size()
(0, 0)
sage: g.add_vertex(0)
sage: g.order(), g.size()
(1, 0)
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sage: g.add_vertices([1, 2, 5, 9])
sage: g.order(), g.size()
(5, 0)
sage: g.add_edges([(1,5), (9,2), (2,5), (1,9)])
sage: g.order(), g.size()
(5, 4)
sage: g.add_edge("Madrid", "Edinburgh")
sage: g.order(), g.size()
(7, 5)

Adding the edge (1,2) is equivalent to adding the edge (2,1). It should
also be noted that the methods add_vertex and add_edge both have “plu-
rals” (add_vertices and add_edges) that take a list as their argument, allowing
a more compact composition (see for example §16.4.1, where we construct a graph
having already generated a set of edges).

In general, Sage is not particular about what types of objects may be used
as vertices of a graph. In fact it accepts any immutable Python objects, that is
any object accepted as a dictionary keyword (cf. §3.3.9). It is, of course, possible
to delete the added elements with the delete_* methods, and to enumerate the
vertices and edges, which we will use often.

sage: g.delete_vertex(0)
sage: g.delete_edges([(1,5), (2,5)])
sage: g.order(), g.size()
(6, 3)
sage: g.vertices()
[1, 2, 5, 9, 'Edinburgh', 'Madrid']
sage: g.edges()
[(1, 9, None), (2, 9, None), ('Edinburgh', 'Madrid', None)]

The edges of a graph are actually represented in Sage as triples, of which
the last entry is a label. Most of the time it is filled with a numeric value —
interpreted for example as capacities in flow or connectivity algorithms, or as
weights in matching problems — though it may contain any immutable object.
By default, the label is None.

When we know the vertices and edges of a graph in advance, we can construct
it in a compact manner with a dictionary associating each vertex with a list of its
neighbours:

sage: g = Graph({
....: 0: [],
....: 1: [5, 9],
....: 2: [1, 5, 9],
....: 'Edinburgh': ['Madrid']})

As before, we can omit lines corresponding to vertices such as 5, 9, or ‘Madrid’,
which are already listed as neighbours of other vertices. Likewise, we can specify
that 1 is a neighbour of 2 even though 2 does not appear in the list of neighbours
of 1: the edge (1,2) is created either way.
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Figure 16.1 – A graph whose vertices are integers or character strings.

Exercise 62 (Circulant graphs). A circulant graph parameterised by n, d is a graph
of n vertices numbered from 0 to n−1 (which we can represent in shape of a circle), such
that two vertices u and v are connected by an edge if u ≡ v+ c mod n, with −d ≤ c ≤ d.
Write a function which takes the parameters n and d, and returns the associated graph.

16.1.2 Available Constructors
Despite the previous examples, it is quite rare to enter an adjacency table in
Sage, or likewise to manually enumerate the edges to create a graph. Most of the
time it is more efficient to build them from pre-defined components: the methods
in graphs.* allow the construction of more than seventy graphs or families of
graphs, which we will now introduce. The Chvátal and Petersen graphs, for
example, are obtained in Sage with the following lines:

sage: P = graphs.PetersenGraph()
sage: C = graphs.ChvatalGraph()

Let us start by describing small graphs — as opposed to graph families that
we will encounter later.

Small Graphs. These graphs are most often named after their discoverers, or
after an object they resemble (a house, a lollipop, a bull).

Small graphs

BullGraph ChvatalGraph ClawGraph
DesarguesGraph DiamondGraph DodecahedralGraph
FlowerSnark FruchtGraph HeawoodGraph
HexahedralGraph HigmanSimsGraph HoffmanSingletonGraph
HouseGraph HouseXGraph IcosahedralGraph
KrackhardtKiteGraph LollipopGraph MoebiusKantorGraph
OctahedralGraph PappusGraph PetersenGraph
TetrahedralGraph ThomsenGraph
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They often appear as counter-examples to certain conjectures, or as smaller
graphs satisfying this or that property. The Petersen graph, for example, is non-
planar: it contains — simultaneously — two minors forbidden by Kuratowski’s
theorem (K5 and K3,3). It is a triangle-free graph (its girth is 5), 3-regular, and
of chromatic number 3 as well. It is also a vertex-transitive graph. Each of these
properties can be determined by Sage with the help of the corresponding methods:

sage: P = graphs.PetersenGraph()
sage: P.is_planar()
False
sage: P.minor(graphs.CompleteBipartiteGraph(3,3))
{0: [1], 1: [8], 2: [4], 3: [6, 7, 9], 4: [2, 3], 5: [0, 5]}
sage: P.minor(graphs.CompleteGraph(5))
{0: [1, 6], 1: [0, 5], 2: [2, 7], 3: [4, 9], 4: [3, 8]}
sage: P.girth()
5
sage: P.is_regular(3)
True
sage: P.chromatic_number()
3
sage: P.is_vertex_transitive()
True
sage: P.show()

Families of Graphs. The constructors presented here describe families of
graphs, each taking one or more arguments (with one exception, nauty_geng,
which does not describe a specific family of graphs, but rather generates sets of
all graphs isomorphic to each other; see Section 15.4.4).

In this list we find a generalisation (two, in fact) of the Petersen graph: the
Kneser graph. This graph is constructed from two parameters, n and k, and its
vertices are the

(
n
k

)
size-k subsets of {1, . . . , n}. Two of these sets are adjacent if

and only if they are disjoint. The vertices of the Petersen graph correspond to
subsets of size k = 2 of a set of size n = 5:
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Families of graphs

BarbellGraph BubbleSortGraph
CircularLadderGraph DegreeSequence
DegreeSequenceBipartite DegreeSequenceConfigurationModel
DegreeSequenceTree DorogovtsevGoltsevMendesGraph
FibonacciTree FuzzyBallGraph
GeneralizedPetersenGraph Grid2dGraph
GridGraph HanoiTowerGraph
HyperStarGraph KneserGraph
LCFGraph LadderGraph
NKStarGraph NStarGraph
OddGraph ToroidalGrid2dGraph
nauty_geng

sage: K = graphs.KneserGraph(5, 2); P = graphs.PetersenGraph()
sage: K.is_isomorphic(P)
True

By construction, Kneser graphs are also vertex-transitive. Their chromatic
number is exactly n− 2k + 2, a surprising result of Lovász proven through the
theorem of Borsuk-Ulam — and therefore by topological considerations [Mat03].
Let us check this immediately, with a few examples:

sage: all( graphs.KneserGraph(n,k).chromatic_number() == n - 2*k + 2
....: for n in range(5,9) for k in range(2,floor(n/2)) )
True

Exercise 63 (Kneser Graphs). Write a function of two parameters n, k returning
the associated Kneser graph, if possible without using the “if” statement.

Basic Graphs. The following graphs are the most common “building blocks”
in graph theory: complete graphs, complete bipartites, circulants, paths, cycles,
stars, etc. Again, there is one notable exception: trees; this method can iterate
over the set of all trees of n vertices.

Elementary graphs

BalancedTree CirculantGraph CompleteBipartiteGraph
CompleteGraph CubeGraph CycleGraph
EmptyGraph PathGraph StarGraph
WheelGraph trees

Random Graphs. This last class of graphs is very rich in properties. Among
others, we find Gn,p and Gn,m, the two simplest models for random graphs.

Random graphs

DegreeSequenceExpected RandomBarabasiAlbert RandomBipartite
RandomGNM RandomGNP RandomHolmeKim
RandomIntervalGraph RandomLobster RandomNewmanWattsStrogatz
RandomRegular RandomShell RandomTreePowerlaw

The graphs Gn,p are defined by an integer n and a real 0 ≤ p ≤ 1. We obtain
a random graph Gn,p on n vertices {0, . . . , n − 1} by tossing a coin for each of
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the
(
n
2
)
vertex pairs i, j — such that the probability of landing on “heads” is p —

and by adding the corresponding edge to the graph for each “heads” result.
We observe that for a fixed graph H, the probability that Gn,p contains H as

an induced subgraph1 tends to 1 when 0 < p < 1 is fixed and n tends to infinity
(see §16.3.4):

sage: H = graphs.ClawGraph()
sage: def test():
....: g = graphs.RandomGNP(20,2/5)
....: return not g.subgraph_search(H, induced=True) is None
sage: sum( test() for i in range(100) ) >= 80
True

16.1.3 Disjoint Unions
In addition to these basic building blocks, Sage allows the creation of disjoint
unions of graphs by means of two simple but effective operations. The addition
of two graphs corresponds to their disjoint union:

sage: P = graphs.PetersenGraph()
sage: H = graphs.HoffmanSingletonGraph()
sage: U = P + H; U2 = P.disjoint_union(H)
sage: U.is_isomorphic(U2)
True

The product of a graph G by an integer k returns the disjoint union of k copies
of G:

sage: C = graphs.ChvatalGraph()
sage: U = 3 * C; U2 = C.disjoint_union(C.disjoint_union(C))
sage: U2.is_isomorphic(U)
True

The following line creates a disjoint union of three copies of the Petersen graph
and two copies of the Chvátal graph:

sage: U = 3*P + 2*C

There are many ways to verify this result, none of which should require more
than a few lines of code. For example, by ensuring that each connected component
is isomorphic to one of the two graphs:

sage: all( (CC.is_isomorphic(P) or CC.is_isomorphic(C))
....: for CC in U.connected_components_subgraphs() )
True

or by counting the exact number of subgraphs:

1H is an induced subgraph of G if there exists a set S ⊆ V (G) of vertices such that the
restriction of G to S (that is, the graph whose vertices are S and whose edges are only those
edges of G between vertices in S) is isomorphic to H. We denote such an induced subgraph
G[S].
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sage: sum( CC.is_isomorphic(P)
....: for CC in U.connected_components_subgraphs() )
3
sage: sum( CC.is_isomorphic(C)
....: for CC in U.connected_components_subgraphs() )
2

Technical Details. It should be noted that the operations of addition and
product create copies. This can be a source of overhead in terms of memory
and time. As such, modifying P or C does not in turn cause U to be modified.
Furthermore, these two operations result in two other losses of information:

• the vertices of the final graph are re-labeled by integers {0, 1, 2, . . .};

• the positions (in the layout) of the vertices are not preserved in U.

The disjoint_union method behaves differently: if the graph g contains a
vertex a, and the graph h a vertex b, the graph returned by g.disjoint_union(h)
contains the vertices (0, a) and (1, b). In the case that a or b are not integers,
but some other type of object (strings, tuples, ...), use of this method greatly
simplifies traversal of the graph resulting from this union.

16.1.4 Graph Visualisation

A very useful aspect of the study of graphs under Sage is the ability to visualise
them. For a basic, no frills visualisation a single command suffices:

sage: C = graphs.ChvatalGraph(); C.show()

This is a valuable tool for visualising the results of certain functions. Here,
we highlight an independent set:

sage: C.show(partition = [C.independent_set()])
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The partition argument of the show method accepts, as the name indicates, a
partitioning of the set of vertices. A colour is assigned to each set in the partition
in order to distinguish them visually. An additional colour is assigned to those
vertices not belonging to the partition. In our example we thus have two colours
in total.

It is of course possible to manually specify the colours we want to assign to
the vertices, with the use of a dictionary in a straightforward syntax:

sage: C.show(vertex_colors = {
....: "red" : [0, 1, 2], "blue" : [3, 4, 5],
....: "yellow" : [6, 7, 8], "purple" : [9, 10, 11]})

Since the colours we desire are not always primary or secondary colours, it
is also possible to specify a hexadecimal code, as in HTML. Methods such as
coloring are useful for situations like this:

sage: C.coloring(hex_colors = True)
{'#00ffff': [3, 8, 5],

'#7f00ff': [11],
'#7fff00': [1, 4, 6, 9],
'#ff0000': [0, 2, 7, 10]}
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sage: C.show(vertex_colors = C.coloring(hex_colors = True))

Usage of the edge_colors argument is identical:

sage: from sage.graphs.graph_coloring import edge_coloring
sage: edge_coloring(C, hex_colors = True)
{'#00ffff': [(0, 6), (1, 5), (2, 8), (3, 4), (7, 11), (9, 10)],

'#7f00ff': [(0, 4), (1, 7), (2, 6), (3, 9), (5, 11), (8, 10)],
'#7fff00': [(0, 9), (1, 2), (3, 7), (4, 8), (5, 10), (6, 11)],
'#ff0000': [(0, 1), (2, 3), (4, 5), (6, 10), (7, 8), (9, 11)]}

sage: C.show(edge_colors = edge_coloring(C, hex_colors = True))

Exporting Images. It is also possible to export individual images generated
by Sage. The below example draws the complete graphs of 3, 4, ..., 12 vertices,
outputting them to the files graph0.png, ..., graph9.png.

sage: L = [graphs.CompleteGraph(i) for i in range(3,3+10)]
sage: for number, G in enumerate(L):
....: G.plot().save('/tmp/' + 'graph' + str(number) + '.png')
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The options of the show and plot commands are endless, and well-documented.
At the very least we should mention the figsize = 15 option, which specifies
the resolution of the image and will prove useful for large graphs.

16.2 Methods of the Graph Class
The Graph class has more than 250 methods available, excluding those defined
exclusively in the DiGraph class, or those appearing only in extension modules.
This makes Sage an expressive and complete library for graph theory, allowing us
to concentrate on the essentials — that is, we can spend less time programming
basic functions, and more time on the problems in which we are actually interested.

As when learning any programming language (or library), it is useful to give
its list of functions at least one look over in order to familiarise ourselves with its
capabilities. This (non-exhaustive) section attempts to introduce the Graph meth-
ods succinctly. It is advisable for the reader to sacrifice a few minutes to look over
the contents of each category of methods — and even the complete list of methods:
the time will prove infinitely well-spent when faced with graph problems. It is
also advisable to have a Sage session open to consult the online documentation for
each of the methods presented (for example g.degree_constrained_subgraph?),
as some accept many options, or have names that are not fully explicit.

16.2.1 Modification of Graph Structure
Of course, much of the Graph class is made up of natural methods for defining
and modifying graphs — necessary but not particularly remarkable functionality.

Access and modification methods of the Graph class

add_cycle add_edge add_edges
add_path add_vertex add_vertices
adjacency_matrix allow_loops allow_multiple_edges
allows_loops allows_multiple_edges clear
delete_edge delete_edges delete_multiedge
delete_vertex delete_vertices edge_iterator
edge_label edge_labels edges
edges_incident get_vertex get_vertices
has_edge has_loops has_multiple_edges
has_vertex incidence_matrix latex_options
loop_edges loop_vertices loops
merge_vertices multiple_edges name
neighbor_iterator neighbors networkx_graph
num_edges num_verts number_of_loops
order relabel remove_loops
remove_multiple_edges rename reset_name
save set_edge_label set_latex_options
set_vertex set_vertices size
subdivide_edge subdivide_edges vertex_iterator
vertices weighted weighted_adjacency_matrix

16.2.2 Operators
Along the same lines, we find methods that act as operators, which return instances
of the Graph class (or DiGraph). For example, the complement method applied
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to a graph G returns a graph defined on the same set of vertices, such that the
edge uv exists if and only if uv 6∈ G. The subgraph method obtains from a graph
G the sub-graph induced by a given set of vertices (see definition page 368), an
operation denoted G[{v1, . . . , vk}].

Let us check some elementary relationships. The complement of P5 (denoted
P̄5) is a house, and the graphs P4 and C5 are self-complementary:

sage: P5 = graphs.PathGraph(5); House = graphs.HouseGraph()
sage: P5.complement().is_isomorphic(House)
True
sage: P4 = graphs.PathGraph(4); P4.complement().is_isomorphic(P4)
True
sage: C5 = graphs.CycleGraph(5); C5.complement().is_isomorphic(C5)
True

Sage also defines (via the eponymous method) the line graph of G — often
denoted L(G) — of which the vertices correspond to the edges of G, and wherein
two vertices are adjacent if their corresponding edges are incident in G. We
also find the definitions of different products of graphs. In each of the following
examples, we suppose that G is the product of G1 and G2, defined on the set
of vertices V (G1)× V (G2). Two vertices (u, v), (u′, v′) ∈ G are adjacent if and
only if:

Cartesian product Lexicographic product
cartesian_product lexicographic_product

or
{
u = u′ and vv′ ∈ E(G2)
uu′ ∈ E(G1) and v = v′

or
{

uu′ ∈ E(G1)
u = u′ and vv′ ∈ E(G2)

Disjunctive product Tensorial product
disjunctive_product tensor_product

or
{
uu′ ∈ E(G1)
vv′ ∈ E(G2) and

{
uu′ ∈ E(G1)
vv′ ∈ E(G2)

Strong product
strong_product

or

 u = u′ and vv′ ∈ E(G2)
uu′ ∈ E(G1) and v = v′

uu′ ∈ E(G1) and vv′ ∈ E(G2)

We can construct a square grid GridGraph as the cartesian product of two
paths:

sage: n = 5; Path = graphs.PathGraph(n)
sage: Grid = Path.cartesian_product(Path)
sage: Grid.is_isomorphic(graphs.GridGraph([n,n]))
True
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Products, operators, . . .

cartesian_product categorical_product complement
copy disjoint_union disjunctive_product
kirchhoff_matrix laplacian_matrix line_graph
lexicographic_product strong_product subgraph
to_directed to_simple to_undirected
tensor_product transitive_closure transitive_reduction
union

16.2.3 Graph Traversal and Distances

Sage offers the usual graph traversal methods, such as depth-first and breadth-first
search (depth_first_search and breadth_first_search) which are the basic
routines for calculating distances, flow, and connectivity.

It also includes a less classical lex_BFS (lexicographic breadth-first search), used
for example, in the detection of chordal graphs (cf. is_chordal). These methods
return an ordering of vertices corresponding to the order of their discovery2:

sage: g = graphs.RandomGNP(10, .6)
sage: list(g.depth_first_search(0))
[0, 8, 5, 4, 9, 2, 3, 7, 6, 1]
sage: list(g.breadth_first_search(0))
[0, 8, 5, 4, 1, 3, 6, 7, 9, 2]
sage: g.lex_BFS(0)
[0, 8, 5, 4, 1, 6, 7, 3, 9, 2]

We define with the help of these traversal methods the shortest_path method,
which is probably the most widely used of all3. Sage also allows the calculation
of many invariants related to distances:

• eccentricity: associate with a vertex v the maximal distance between v
and all other vertices of the graph;

• center: return a central vertex v of the graph — that is, a vertex of
minimal eccentricity;

• radius: return the eccentricity of a centre;

• diameter: return the maximal distance between two vertices;

• periphery: return a list of vertices of eccentricity equal to the diameter.

2While lex_BFS returns a list of vertices, the depth_first_search and breadth_first_search
methods are iterators over the vertices, hence the use of list.

3It should be noted that shortest_path does not necessarily call breadth_first_search:
when the edges of a graph are given with associated distances, implementations of Dijkstra’s
algorithm (standard or bidirectional) take over.
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Distances, traversal

average_distance breadth_first_search center
depth_first_search diameter distance
distance_all_pairs distance_graph eccentricity
lex_BFS periphery radius
shortest_path shortest_path_all_pairs shortest_path_length
shortest_path_lengths shortest_paths

16.2.4 Flows, Connectivity, Matching

Sage can solve problems of maximum flow (cf. §17.4.3) with the help of the
flow method4. Thanks to the aforementioned traversals, it also contains nu-
merous methods related to connectivity (is_connected, edge_connectivity,
vertex_connectivity, connected_components, . . . ) as well as results from
Menger’s theorem:

Given a graph G and two of its vertices u, v, the following statements are
equivalent:

• the value of the maximum flow between u and v is k (see flow);

• there exist k (but not k + 1) edge-disjoint paths between u and v (see
edge_disjoint_paths);

• there exists a set of k edges in G which, once removed from the graph,
disconnect u from v (see edge_cut).

The counterparts to these connectivity methods in terms of vertices are flow
(with the vertex_bound=True option), vertex_cut and vertex_disjoint_paths.

Let us verify, for example, that with (very) high probability the connectivity
of a random graph Gn,p is equal to its minimum degree:

sage: n = 30; p = 0.3; trials = 50
sage: def equality(G):
....: return G.edge_connectivity() == min(G.degree())
sage: sum(equality(graphs.RandomGNP(n,p)) for i in range(trials))/trials
1

We can also obtain the decomposition of a graph into 2-connected compo-
nents, or its Gomory-Hu tree, respectively with blocks_and_cut_vertices and
gomory_hu_tree.

Since it is one of the fundamental functions of graph theory, we will mention
here the matching method, which constructs a maximal matching using Edmonds’
algorithm. Matchings are also discussed in §16.4.2 and §17.4.2.

4Two implementations are available: the first follows the Ford-Fulkerson algorithm, while
the second uses linear programming.
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Flows, connectivity, . . .

blocks_and_cut_vertices connected_component_containing_vertex
connected_components connected_components_number
connected_components_subgraphs degree_constrained_subgraph
edge_boundary edge_connectivity
edge_cut edge_disjoint_paths
edge_disjoint_spanning_trees flow
gomory_hu_tree is_connected
matching multicommodity_flow
vertex_boundary vertex_connectivity
vertex_cut vertex_disjoint_paths

16.2.5 NP-Complete Problems
Sage contains algorithms for exact solutions of certain NP-complete problems. Of
course, these problems may demand significant computational resources, but many
real-world cases may be easier to solve than their theoretical counter-examples.
For example, it is possible to solve the following optimisation problems.

Maximum Cliques and Independent Sets. A maximum clique of a graph
is a set of pair-wise adjacent vertices of maximum cardinality (or of non-adjacent
vertices in the case of the independent set). One application of this type of
problem is presented in §16.4.1. This is the algorithm used by the program
Cliquer [NO].
Methods: clique_maximum, independent_set

Vertex and Edge Colouring. A proper vertex colouring of a graph is an
assignment of colours to vertices such that any two adjacent vertices have different
colours. Sage has several functions to compute exact colourings, mostly using
linear programming or the Dancing Links algorithm. The reader will find in
§16.3.1 an explanation of a simple, but non-optimal graph colouring algorithm.
Methods: chromatic_number, coloring, edge_coloring1, grundy_coloring1.

Dominating Set. A set S of vertices of a graph is called dominating if all
vertices v in G are neighbours with an element of S—we call a vertex not in the
set S dominated by elements of the set. The set of all vertices being trivially
dominating, the problem is to minimise the size of the set S. This problem is
solved by Sage with the help of linear programming.
Method: dominating_set

Hamiltonian Cycle, Traveling Salesman. A graph G is called Hamiltonian
if it contains a cycle that passes once and only once through each of its vertices.
Unlike the problem of the Eulerian cycle — the cycle that uses each edge of G
once and only once — this problem is NP-complete, and is solved by Sage using
linear programming, in the specific case of the traveling salesman problem.

1These methods are not directly accessible through the Graph class. To access these and
other colouring functions, see the graph_coloring module.
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Figure 16.2 – The Chvátal graph and one of its Hamiltonian cycles.

We demonstrate the hamiltonian_cycle function, which returns a Hamilto-
nian cycle when such a cycle exists (Figure 16.2):

sage: g = graphs.ChvatalGraph(); cycle = g.hamiltonian_cycle()
sage: g.show(vertex_labels = False); cycle.show(vertex_labels = False)

Methods: is_hamiltonian, hamiltonian_cycle, traveling_salesman_problem

Miscellaneous Problems. Sage also knows how to calculate the genus of a
graph (genus), maximum cuts (max_cut), Steiner trees (steiner_tree), etc. It
can also solve existence problems, such as of multi-commodity flows (multicommodity_
flow), test for the existence of minors (minor—find a minor isomorphic to a given
graph), or search for subgraphs (subgraph_search).

Although the theoretical complexity of these problems is not yet known, algo-
rithms are available to solve the problem of graph isomorphism (is_isomorphic)
as well as to calculate the automorphism groups of a graph (automorphism_group).

NP-complete problems (or similar)

automorphism_group characteristic_polynomial
chromatic_number chromatic_polynomial
coloring disjoint_routed_paths
edge_coloring dominating_set
genus hamiltonian_cycle
independent_set_of_representatives is_hamiltonian
is_isomorphic max_cut
minor multicommodity_flow
multiway_cut subgraph_search
traveling_salesman_problem steiner_tree
vertex_cover

16.2.6 Recognition and Testing of Properties
A number of NP-complete problems have efficient solutions (linear, quadratic, ...)
for graphs that belong to special classes. For example, it is trivial to solve the
maximum clique problem on a chordal graph, and the complexity is polynomial
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(albeit difficult) to compute an optimal vertex colouring on a perfect graph. Sage
has algorithms for the recognition of certain elementary classes of graphs: forests
(is_forest), trees (is_tree), bipartite graphs (is_bipartite), Eulerian graphs
(is_eulerian), regular graphs (is_regular), etc. It is also possible to identify
the following classes.

Chordal Graphs. A graph is said to be chordal if it does not have any cycle of
size greater than four as an induced subgraph. Equivalently, any chordal graph
can be decomposed by sequentially removing those vertices whose neighbourhood
is a complete graph (this decomposition order is called a perfect elimination
ordering). Such graphs can be recognised using a breadth-first search (lex_BFS).
Method: is_chordal

Interval Graphs. Let I = {I1, . . . , In} be a finite set of intervals of real
numbers. From I, we define a graph G of n vertices {1, . . . , n}, where two vertices
i and j are adjacent if and only if the corresponding intervals Ii and Ij have a
non-empty intersection. Interval graphs are those that can be constructed in this
fashion. They make up a sub-class of chordal graphs, recognisable in linear time
thanks to the structure of PQ-trees.
Method: is_interval

Perfect Graphs. A graph G is said to be perfect if for all induced subgraphs
G′ ⊆ G the chromatic number of G′ is equal to the maximum size of a clique (i.e.,
the equality χ(G′) = ω(G′) holds). Although the recognition of these graphs is a
polynomial problem, the algorithms are complex and the implementation in Sage
uses an exponential algorithm.
Method: is_perfect

Vertex-Transitive Graphs. A graph G is said to be vertex-transitive if there
exists for all pairs of vertices u and v an isomorphism h : V (G) 7→ V (G) such
that h(u) = v. Although the theoretical complexity of this problem is not yet
established, the implementation available in Sage is quite efficient.
Method: is_vertex_transitive

Cartesian Product of Graphs. Only certain graphs can be expressed as
the Cartesian product of a sequence G1, ..., Gk of graphs. It is possible, given
a connected graph G, to find the unique such construction with the help of an
elegant characterisation result, easily translated into a polynomial algorithm.
Method: is_cartesian_transitive

In addition to their characterisation by construction (such as chordal graphs)
or by a particular property (such as perfect graphs), a number of classes of graphs
are formulated in terms of excluded subgraphs. This is equivalent to saying that
a graph G belongs to a class C if and only if it does not contain a subgraph in
{G1, . . . , Gk}. In such cases we can write a recognition algorithm that simply
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tests for the existence of each of these subgraphs, which can be accomplished with
the subgraph_search function.

Recognition and tests of properties

is_bipartite is_chordal is_directed
is_equitable is_eulerian is_even_hole_free
is_forest is_interval is_odd_hole_free
is_overfull is_regular is_split
is_subgraph is_transitively_reduced is_tree
is_triangle_free is_vertex_transitive

16.3 Graphs in Action
It is time now to put to use some of the features we have discovered. The
following examples are motivated by a practical or theoretical pretext, and are
not necessarily the best ways to use Sage to solve the problems they illustrate.
They are often brute-force and enumerative, and that is what gives them their
charm: their aim is obviously to give clear and approachable examples of using
Sage’s graph library — form over substance.

16.3.1 Greedy Vertex Colouring of a Graph
To colour the vertices of a graph means to assign to each vertex a colour (here
we can agree that an integer will serve as a colour), so that each vertex has a
different colour from that of its neighbours. This is of course always possible: it
suffices to use as many colours as there are vertices; it is for this reason that the
problem of colouring is a minimisation problem: to find, given a graph G, the
smallest number χ(G) of colours that satisfies the aforementioned constraint.

As the calculation of χ(G) is a problem to which much impressive literature
has been devoted, the reader with a more practical mindset will be pleased to find
that there exist expeditive ways of getting closer to the optimal colouring than
the trivial |V | colours. To them we propose the following algorithm: “Greedy
colouring of graph vertices”.

We take an arbitrary vertex and assign it a colour, the integer 0. Iteratively,
we take a non-coloured vertex and assign it the lowest unused integer not used by
its neighbours.

This algorithm only requires a few lines of explanation, and it is the same
when implemented in Sage. We apply the algorithm here to a random graph:

sage: n = 100; p = 5/n; g = graphs.RandomGNP(n, p)

sage: # Set of available colours.
sage: # In the worst-case scenario up to n colours suffice
sage: available_colours = Set(range(n))

sage: # This dictionary contains the colour associated
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sage: # with each vertex of the graph
sage: colour = {}
sage: for u in g:
....: forbidden = Set([colour[v] for v in g.neighbors(u)
....: if v in colour])
....: colour[u] = min(available_colours - forbidden)

sage: # Number of colours used
sage: max(colour.values()) + 1
6

This is significantly more efficient than using 100 colours. It is easy, however,
to improve this algorithm when we notice that it depends on an unknown: the
order in which the vertices are selected. In fact, we do not have any control over
the ordering, as we just use “for u in g” which allowed for rapid development
of the program. In Chapter 15, we learned of the rich collection of set types
available in Sage, of which Permutations was one. Better still, this class has a
random_element method that we can use:

sage: P = Permutations([0,1,2,3]); P.random_element()
[2, 0, 1, 3]

We will try to obtain better results by colouring the vertices of our graph 30
times in orders given by random permutations. The result is the following code
that we apply to the graph g defined previously:

sage: available_colours = Set(range(n))

sage: n_tests = 30
sage: vertices = g.vertices()
sage: P = Permutations(range(n))
sage: best_coloring = {}
sage: best_chromatic_number = +oo

sage: for t in range(n_tests):
....: # Random ordering of vertices
....: p = P.random_element()
....: colour = {}
....: for i in range(g.order()):
....: u = vertices[p[i]]
....: forbidden = Set([colour[v] for v in g.neighbors(u)
....: if v in colour])
....: colour[u] = min(available_colours - forbidden)
....: # Update the best colouring
....: if max(colour.values()) + 1 < best_chromatic_number:
....: best_coloring = colour
....: best_chromatic_number = 1 + max(colour.values())

sage: best_chromatic_number # Number of colours used
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4

An improvement, in any case! However, all the machinery for updating the
minimum is not necessary. There is no reason to program what is already there.
In Python, a large majority of objects — in this case (int, dict) pairs — are
comparable to each other, in lexicographic order (we compare the first terms —
integers —, then the second terms — dictionaries —, which has less significance
in this case). By rewriting the first part of our code as a function we obtain the
following result:

sage: def greedy_coloring(g, permutation):
....: n = g.order()
....: available_colours = Set(range(n))
....: vertices = g.vertices()
....: colour = {}
....: for i in range(n):
....: u = vertices[permutation[i]]
....: forbidden = Set([colour[v] for v in g.neighbors(u)
....: if v in colour])
....: colour[u] = min(available_colours - forbidden)
....: return max(colour.values()) + 1, colour

With this function defined, performing 50 attempts and returning the minimum
is trivial:

sage: P = Permutations(range(g.order()))
sage: n_colours, coloration = min(
....: greedy_coloring(g, P.random_element()) for i in range(50))
sage: n_colours
4

To colour a graph using the minimal number of colours, it is preferable to
use the coloring method. Being that this problem is NP-complete, one should
expect longer computation times than with greedy colouring.

Exercise 64 (Optimal order for greedy colouring). The greedy colouring algorithm
is capable of colouring a graph with the minimum number of colours possible (i.e., χ(G))
if it iterates through the vertices in the right order. With the help of the coloring
method, which calculates an optimal colouring, write a function that returns an order
of vertices with which the greedy colouring algorithm produces the optimal results.

16.3.2 Generating Graphs Under Constraints
Random graphs Gn,p have very interesting connectivity properties. In particular,
their minimal cuts are almost certainly the neighbourhood of a vertex: there are
therefore cuts such that one of the two connected partitions consists of a single
vertex. This may seem unsettling: every set of vertices then defines a cut of
greater cardinality than the size of the minimum cut. However, it is possible,
with great patience (for very large graphs) and a few lines of Sage to produce
somewhat different random graphs. Here is the method we will implement.
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Let n and k be two integers, the first representing the number of vertices and
the second a connectivity. The algorithm begins with a tree of n vertices; calculate
a minimum cut and its two corresponding sets. As long as the minimum cut is of
size k′ < k, we randomly add k − k′ edges between the two sets.

As described above, given a pair of sets S and S̄, we will need to generate a pair
of elements (s, s̄) ∈ S × S̄. For this we use the constructor cartesian_product
and the resulting object’s random_element method.

sage: n = 20; k = 4; g = graphs.RandomGNP(n, 0.5)
sage: g = g.subgraph(edges = g.min_spanning_tree())

sage: while True:
....: _, edges, [S,Sb] = g.edge_connectivity(vertices = True)
....: cardinality = len(edges)
....: if cardinality < k:
....: CP = cartesian_product([S, Sb])
....: g.add_edges([CP.random_element()
....: for i in range(k - len(edges))])
....: else:
....: break

And that’s it.

16.3.3 Find a Large Independent Set

Although Sage provides a method Graph.independent_set that finds a maximal
independent set in a graph (set of non-adjacent vertices), nothing prevents us
from using funny graph theory results to discover ourselves an independent set.
We can read for example in the book The Probabilistic Method [AS00] that any
graph G has an independent set S such that

|S| ≥
∑
v∈G

1
d(v) + 1

where d(v) stands for the degree of v. The proof of this result lies in the following
algorithm.

Let us take a random bijection n : V 7→ {1, . . . , |V |}, associating to each vertex
of G a unique integer. Let us now associate to this function an independent set
Sn, defined as the set of vertices of G having image less than all their neighbours
(minimal vertices). Formally, this is written:

Sn = {v ∈ G : ∀u such that uv ∈ E(G), n(v) < n(u)}.

This set is by definition an independent set, but how to control its size? It
suffices to ask, for each vertex, the frequency with which it appears in the set Sn.
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If we consider the set P of bijections from V to {1, . . . , |V |}, we notice that∑
n∈P
|Sn| =

∑
n∈P

∑
v∈G

“1 if v is minimal for n, 0 otherwise”

=
∑
v∈G

(∑
n∈P

“1 if v is minimal for n, 0 otherwise”
)

=
∑
v∈G

|P |
d(v) + 1 = |P |

∑
v∈G

1
d(v) + 1 .

As a consequence, such a function corresponds on average to an independent set
of size

∑
v∈G

1
d(v)+1 . To obtain a set of this size with Sage, we will use random

bijections using the Permutations class, until we obtain the size promised by the
theorem:

sage: g = graphs.RandomGNP(40, 0.4)
sage: P = Permutations(range(g.order()))
sage: mean = sum( 1/(g.degree(v)+1) for v in g )

sage: while True:
....: n = P.random_element()
....: S = [v for v in g if all( n[v] < n[u] for u in g.neighbors(v))]
....: if len(S) >= mean:
....: break

16.3.4 Find an Induced Subgraph in a Random Graph
We will play here with the random graphs Gn,p, quickly discussed in Section 16.1.2
on graph constructors. As mentioned there, these graphs have the following
property.

Let H be a graph, and 0 < p < 1. Then:

lim
n→+∞

P [H is an induced subgraph of Gn,p] = 1

which means that, H and p being fixed, a large random graph Gn,p will
almost surely contain H as induced subgraph (see Definition page 368).

Let us reformulate: given a graph H and a large random graph G, it is
possible to find a copy of H in G, by iteratively assigning to each vertex vi of
V (H) = {v1, . . . , vk} a representative h(vi), where each vi is a “correct extension”
of the already selected vertices. We will thus follow the algorithm:

• associate to v1 a random vertex h(v1) ∈ G;

• associate to v2 a random vertex h(v2) ∈ G such that h(v1) is adjacent to
h(v2) in G if and only if v1 is adjacent to v2 in H;

• . . .
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• after j < k steps, we have associated a representative h(vi) ∈ G to every vi
(i ≤ j), in such a way that for any i, i′ ≤ j, h(vi)h(vi′) ∈ E(G) if and only
if vivi′ ∈ E(H). We now associate to vj+1 a random vertex h(vj+1) such
that for any i ≤ j, h(vi)h(vj+1) ∈ E(G) if and only if vivj+1 ∈ E(H);

• . . .

• after k steps, the subgraph of G induced by the representatives of vertices
v1, . . . , vk is a copy of H.

Proposition. When n is large, this strategy works with high probability.

Proof. Let us define Hj = H[{v1, . . . , vj}], and let us write P [H 7→ind Gn,p]
the probability that H is an induced subgraph of Gn,p. We can roughly bound
the probability that Hj (but not Hj+1) is an induced subgraph of Gn,p in the
following manner:

• Given a copy of Hj in some Gn,p, let us compute the probability that
no other vertex can complete the current copy into a copy of Hj+1. The
probability that a vertex works being

pdHj+1 (vj+1)(1− p)j−dHj+1 (vj+1) ≥ min(p, 1− p)j ,

the probability that none of the n− j remaining vertices works is at most(
1−min(p, 1− p)j

)n−j
.

• There are in our graph at most j!
(
n
j

)
different copies of Hj (in fact

(
n
j

)
ways

to choose a set of j vertices, and j! bijections between these vertices and
those of Hj).

Since 0 < p < 1, we write 0 < ε = min(p, 1 − p); therefore, the probability
that Hj (but not Hj+1) is an induced subgraph of Gn,p is at most, for a fixed
j ≤ k,

j!
(
n

j

)
(1− εj)n−j ≤ j!nj(1− εj)n−j = o(1/n)

which is asymptotically zero when n grows. Eventually:

P [H 7→ind Gn,p] ≥ 1− P [H2 7→ind Gn,p, H3 67→ind Gn,p]
− P [H3 7→ind Gn,p, H4 67→ind Gn,p]
. . .

− P [Hk−1 7→ind Gn,p, Hk 67→ind Gn,p]

P [H 7→ind Gn,p] ≥ 1−
∑
j≤k

j!nj(1− εj)n−j

≥ 1− k o
( 1
n

)
.
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Moreover, this proof provides a probabilistic algorithm allowing to find a copy
of a given graph H in a large random graph Gn,p. Although this algorithm does
not always find a copy of H if such a copy exists, the probability of success tends
to 1 when n goes to infinity.

sage: def find_induced(H, G):
....: # the function from V(H) to V(G) we aim to define:
....: f = {}
....: # set of vertices of G not yet used by f:
....: G_remain = G.vertices()
....: # set of vertices having no representative yet:
....: H_remain = H.vertices()
....: # while the function is not complete:
....: while H_remain:
....: v = H_remain.pop(0) # look for the next vertex of H
....: # and its potential images in G
....: candidates = [u for u in G_remain if
....: all([H.has_edge(h,v) == G.has_edge(f_h,u)
....: for h, f_h in f.iteritems()])]
....: # if no candidate is found, we abort immediately
....: if not candidates:
....: raise ValueError("No copy of H has been found in G")
....: # otherwise we select the first candidate
....: f[v] = candidates[0]
....: G_remain.remove(f[v])
....: return f

sage: H = graphs.PetersenGraph()
sage: G = graphs.RandomGNP(500,0.5)
sage: find_induced(H,G)
{0: 0, 1: 4, 2: 3, 3: 7, 4: 35, 5: 10, 6: 67, 7: 108, 8: 240, 9: 39}

To find a copy of a given graph H in a graph G in one line, it is more efficient
to call the Graph.subgraph_search method.

16.4 Some Problems Solved Using Graphs

16.4.1 A Quiz from the French Journal “Le Monde 2”
We can read in number 609 of “Le Monde 2” the following quiz.

What is the size of the largest set S ⊆ [0, ..., 100] which does not
contain two integers i, j such that |i− j| is a square?

The problem can be easily translated into a graph theory problem. The
relation “|i − j| is a square” being a binary symmetric relation, we start by
creating the graph on the set of vertices [0, . . . , 100] in which two vertices are
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adjacent (incompatible) if their difference is a square. We will use for that the
Subsets class which allows us here to iterate over all size-2 subsets.

sage: n = 100; V = range(n+1)
sage: G = Graph()
sage: G.add_edges([
....: (i,j) for i,j in Subsets(V,2) if is_square(abs(i-j)) ])

Since we are looking for a maximal number of “compatible” elements, we
might call the independent_set method, which returns a maximal subset of
non-adjacent elements.

sage: G.independent_set()
[4, 6, 9, 11, 16, 21, 23, 26, 28, 33, 38, 43, 50,
56, 61, 71, 76, 78, 83, 88, 93, 95, 98, 100]

The answer is thus 24, and not “42”. As a consequence, the quiz from “Le
Monde 2” was not “the ultimate question of life, the universe, and everything”,
whose answer should be searched elsewhere.

16.4.2 Task Assignment
We now face the following situation: for an important construction site, ten
workers must complete a total of ten tasks. We can associate to each worker a list
of tasks they are able to complete. How to distribute the tasks in a optimal way?

Here again, we start by translating the problem into a graph: it will be
bipartite, defined on the union {w0, . . . , w9} ∪ {t0, . . . , t9} of workers and tasks,
and we will define ti as adjacent to wj when wj is able to complete task ti.

sage: tasks = {0: [2, 5, 3, 7], 1: [0, 1, 4],
....: 2: [5, 0, 4], 3: [0, 1],
....: 4: [8], 5: [2],
....: 6: [8, 9, 7], 7: [5, 8, 7],
....: 8: [2, 5, 3, 6, 4], 9: [2, 5, 8, 6, 1]}
sage: G = Graph()
sage: for i in tasks:
....: G.add_edges(("w" + str(i), "t" + str(j)) for j in tasks[i])

It now only remains to use the matching method, which will return a maximal
set of tasks that can be performed simultaneously by different people:

sage: for task, worker,_ in sorted(G.matching()):
....: print("{} can be performed by {}".format(task, worker))
t0 can be performed by w2
t1 can be performed by w3
t2 can be performed by w5
t3 can be performed by w8
t4 can be performed by w1
t5 can be performed by w7
t6 can be performed by w9
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t7 can be performed by w0
t8 can be performed by w4
t9 can be performed by w6

16.4.3 Plan a Tournament

Given n teams competing in a tournament, in which each team must play against
all other teams, how to plan all matches in the best way, knowing that several
matches can happen simultaneously?

This is a typical case of the proper vertex colouring in graph theory. Given a
graph G, this problem consists in assigning a colour to each edge so that no vertex
touches two edges of same colour. Equivalently, this problem reduces to find an
edge partition into pairings (union of disjoint vertices) of minimal cardinality. In
the present case, we will try to colour the edges of the complete graph — each
one representing the match between the two teams at its ends:

sage: n = 10
sage: G = graphs.CompleteGraph(n)
sage: from sage.graphs.graph_coloring import edge_coloring
sage: for day, matches in enumerate(edge_coloring(G)):
....: print("Matches of day {}: {}".format(day, matches))
Matches of day 0: [(0, 9), (1, 8), (2, 7), (3, 6), (4, 5)]
Matches of day 1: [(0, 2), (1, 9), (3, 8), (4, 7), (5, 6)]
Matches of day 2: [(0, 4), (1, 3), (2, 9), (5, 8), (6, 7)]
Matches of day 3: [(0, 6), (1, 5), (2, 4), (3, 9), (7, 8)]
Matches of day 4: [(0, 8), (1, 7), (2, 6), (3, 5), (4, 9)]
Matches of day 5: [(0, 1), (2, 8), (3, 7), (4, 6), (5, 9)]
Matches of day 6: [(0, 3), (1, 2), (4, 8), (5, 7), (6, 9)]
Matches of day 7: [(0, 5), (1, 4), (2, 3), (6, 8), (7, 9)]
Matches of day 8: [(0, 7), (1, 6), (2, 5), (3, 4), (8, 9)]

It would be easy to adapt this solution to the case where the teams do not
have to compete with all the others.

For the joy of it, the following image gives a proper edge colouring of the
complete graph. A same colour indicates that the corresponding matches happen
the same day.

sage: g = graphs.CompleteGraph(10)
sage: g.show(edge_colors=edge_coloring(g, hex_colors=True))
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17
Linear Programming

This chapter is devoted to linear programming and mixed integer linear program-
ming, presenting numerous problems that can be solved with these methods. The
applications considered mainly come from graph theory, and the elementary ones
should be easily understandable without any specific knowledge of this field. As
a tool in combinatorics, applying linear programming amounts to understanding
how to reformulate a problem of existence or optimisation in terms of linear
constraints.

17.1 Definition

A linear program is a system of linear equations where the goal is to search for
an optimal solution. Formally, it is defined by a matrix A : Rm 7→ Rn and two
vectors b ∈ Rn and c ∈ Rm. Solving a linear program then requires to find a
vector x ∈ Rm which maximises an objective function, while satisfying a system
of linear constraints, i.e.,

ctx = max
y s.t. Ay≤b

cty

where the relationship u ≤ u′ between two vectors indicates that the values of u
are less than or equal to those of u′, componentwise. We will also write:

maximise: ctx
such that: Ax ≤ b.
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A solution to the following linear program is given by x = 4, y = 0, z = 1.6:

max: x+ y + 3z
such that: x+ 2y ≤ 4

5z − y ≤ 8
x, y, z ≥ 0.

In other words, solving a linear program consists in finding a point which max-
imises a linear function over a polytope (in this case the preimage A−1(≤ b)).
These definitions, however, do not yet explain the motivation for using linear
programming in combinatorics, which is the main focus of this chapter. We will
show how to apply this formalism in order to solve, among others, the knapsack
problem (§17.4.1), the matching problem (§17.4.2), or the flow problem (§17.4.3).
In §17.5, we will prove the existence of a Hamiltonian cycle by the method of
generating constraints.

17.2 Integer Programming
There are bad news coming along with this definition of linear programming:
a linear program (LP) can be solved in polynomial time. This is indeed bad
news, because this would mean that unless we define LP’s of exponential size, we
cannot expect to solve NP-complete problems with this method, which would be
a disappointment. On a brighter side, it becomes NP-complete to solve a linear
program if we are allowed to specify constraints of a different kind: requiring
that all or some components of x be integers instead of real values. Such a LP is
actually called an integer linear program (ILP) or, if only certain components
should be integers, a Mixed Integer Linear Program (MILP).

Solving ILP or MILP is known to be NP-complete. Hence, we can expect to
find in the MILP framework a wide range of expressivity.

17.3 In Practice
17.3.1 The MixedIntegerLinearProgram Class
In Sage, MixedIntegerLinearProgram represents ... a MILP! It is also used to
solve regular LP’s. It has a very small number of methods, meant to define our
set of constraints and variables, then to read the solution found by the solvers
once computed. It is also possible to export a MILP defined with Sage to a LP or
MPS file — standard formats, understood by most solvers.

For illustration, let us solve the linear program presented in §17.1. We first
need to build an object of class MixedIntegerLinearProgram,

sage: p = MixedIntegerLinearProgram()

define the 3 optimisation variables,

sage: x, y, z = p['x'], p['y'], p['z']
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sage: p.set_min(x, 0)
sage: p.set_min(y, 0)
sage: p.set_min(z, 0)

the objective function,
sage: p.set_objective( x + y + 3*z )

and finally the constraints:
sage: p.add_constraint( x + 2*y <= 4 )
sage: p.add_constraint( 5*z - y <= 8 )

The method solve of MixedIntegerLinearProgram returns the optimal value of
the objective function:

sage: p.solve()
8.8

We can read an optimal assignment of values for x, y, and z with the method
get_values:

sage: p.get_values(x), p.get_values(y), p.get_values(z)
(4.0, 0.0, 1.6)

17.3.2 Variables
The variables associated to an instance of a MixedIntegerLinearProgram are
objects of type MIPVariable, but we will not discuss that any further. In the
previous example, the variables were obtained using p[’x’], which is practical
when their number is small. The linear programs that we define next often require
associating to the variables a list of objects, such as integers, the vertices of a
graph, or even other types of objects. It is then essential to be able to handle
vectors of variables, or even dictionaries of variables.

For example, if in our linear program we need to define the variables x1, . . . , x15,
it is easier to make use of the method new_variable:

sage: x = p.new_variable()

It is now possible to define new constraints using our 15 variables:
sage: p.add_constraint( x[1] + x[12] - x[14] >= 8 )

We point out that it is not necessary to define the “size” of the vector x. In
fact, x accepts without complaining any key of an immutable type (cf. §3.3.7),
exactly like a dictionary. Hence, we can write:

sage: p.add_constraint( x["i_am_a_valid_index"] + x["a",pi] <= 3 )

Let us note that this formalism allows to use variables with multiple indices
as well. To define the constraint

∑
0≤i,j<4 xi,j ≤ 1 we can write:

sage: p.add_constraint( p.sum(
....: x[i,j] for i in range(4) for j in range(4)) <= 1 )

The notation x[i,j] is equivalent to the notation x[(i,j)].
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Types of Variables. By default, the variables returned by new_variable are
real. It is possible to define them as binary variables, using the argument binary
= True, or as integer variables, using integer = True. We can then set minimal
or maximal bounds for the variables with the help of the methods set_min and
set_max. Moreover, it is possible to change the type of a variable after it has been
created, with the help of the methods set_binary, set_integer or set_real.

17.3.3 Infeasible or Unbounded Problems
Certain linear programs do not admit, formally, any solution. In fact, it is
ambitious to attempt optimising a function — even a linear one — over an
empty set, or conversely, over a domain without enough constraints, such that the
objective function is unbounded. In these two cases, Sage will return an exception
when the method solve is invoked:

sage: p = MixedIntegerLinearProgram()
sage: p.set_objective( p[3] + p[2] )
sage: p.add_constraint( p[3] <= 5 )

sage: p.solve()
Traceback (most recent call last):
...

MIPSolverException: GLPK: The LP (relaxation) problem has no dual
feasible solution

sage: p.add_constraint( p[2] <= 8 )
sage: p.solve()
13.0

sage: p.add_constraint( p[3] >= 6 ); p.solve()
Traceback (most recent call last):
...

MIPSolverException: GLPK: Problem has no feasible solution

Similarly, restricting a variable to the integers can make the domain empty:

sage: p = MixedIntegerLinearProgram()
sage: p.set_objective( p[3] )
sage: p.add_constraint( p[3] <= 4.75 ); p.add_constraint( p[3] >= 4.25 )
sage: p.solve()
4.75
sage: p.set_integer(p[3]); p.solve()
Traceback (most recent call last):
...

MIPSolverException: GLPK: Problem has no feasible solution

In any case, it would be unreasonable to bring a code to a halt whenever
the linear program cannot be solved; indeed, the sole objective of certain linear
programs is to test the existence of a solution, and are in consequence often



17.4. FIRST APPLICATIONS IN COMBINATORICS 393

infeasible. To handle these scenarios, we will use the classical “try-except” Python’s
mechanism to catch exceptions:

sage: try:
....: p.solve()
....: print("The problem has a solution!")
....: except:
....: print("The problem is infeasible!")
The problem is infeasible!

17.4 First Applications in Combinatorics
Now that we have discussed the basics, let us consider a more interesting aspect:
modelling. In this section we present several optimisation or existence problems:
starting with their abstract definition, we continue to model each problem as a
MILP, obtaining in a couple of lines of code an algorithm for an NP-complete
problem.

17.4.1 Knapsack
The “knapsack problem” is the following: we have in front of us a collection of
items having both a weight and a “utility” measured by a real number. We would
like to choose some of those objects such that the total weight does not exceed
a given constant C, the best way being to optimise the sum of utilities of the
objects in the knapsack.

To achieve this, to each object o of a list L we associate a binary variable
taken[o], set to 1 if the object is chosen, and 0 otherwise. We are trying to solve
the following MILP:

max:
∑
o∈L

utilityo × takeno

such that:
∑
o∈L

weighto × takeno ≤ C.

Using Sage, let us assign to our items some cost and utility:
sage: C = 1
sage: L = ["Pan", "Book", "Knife", "Flask", "Flashlight"]
sage: w = [0.57,0.35,0.98,0.39,0.08]; u = [0.57,0.26,0.29,0.85,0.23]
sage: weight = {}; utility = {}
sage: for o in L:
....: weight[o] = w[L.index(o)]; utility[o] = u[L.index(o)]

We can now define the MILP itself.
sage: p = MixedIntegerLinearProgram()
sage: taken = p.new_variable( binary = True )
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sage: p.add_constraint(
....: p.sum( weight[o] * taken[o] for o in L ) <= C )
sage: p.set_objective(
....: p.sum( utility[o] * taken[o] for o in L ) )
sage: p.solve()
1.4199999999999999
sage: taken = p.get_values(taken)

We can check that the solution is admissible:

sage: sum( weight[o] * taken[o] for o in L )
0.960000000000000

Should we take a flask ?

sage: taken["Flask"]
1.0

Exercise 65 (Subset Sum). The combinatorial problem known as Subset Sum
consists in finding, among a set of integers, a non-empty subset of elements whose
sum is zero. Solve this problem with a linear program over the integers for the set
{28, 10,−89, 69, 42,−37, 76, 78,−40, 92,−93, 45}.

17.4.2 Matching

Finding a matching in a graph, amounts to detecting a set of edges which are
pairwise disjoint. The empty set being a trivial matching, we focus our attention
on maximum matchings: we seek to maximise the number of edges in a matching.
Computing the maximum matching is a polynomial problem, which follows
from a result of Jack Edmonds [Edm65]. Edmonds’ algorithm is based on local
improvements and the proof that the algorithm does not halt until a maximum
matching is found. This algorithm is not the hardest to implement among those
graph theory can offer, though this problem can be modeled with a very simple
MILP.

For this task we will need, as in the previous problem, to associate a binary
value to each of our objects — the edges of a graph — indicating if the edge
belongs to our matching or not.

It is then needed to ensure that two adjacent edges cannot be simultaneously
in the matching. Indeed, this looks like a linear constraint: if x and y are two
edges of the same graph, and if mx and my are their associated variables, it
suffices to require that the inequality mx +my ≤ 1 is satisfied. Since these two
edges will not be found simultaneously in our solution, we are able to write down
a linear program which computes the maximum matching. Let us remark that if
two edges cannot be in the matching simultaneously, it is because they both have
a common vertex v of the graph. It is then simpler to say that at most one edge
incident to each vertex v should be taken in the matching, which is again a linear
constraint.
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max:
∑

e∈E(G)

me

such that: ∀v ∈ V (G),
∑

e∈E(G)
e=uv

me ≤ 1.

This problem is readily adapted to a MILP using Sage:

sage: g = graphs.PetersenGraph()
sage: p = MixedIntegerLinearProgram()
sage: matching = p.new_variable(binary = True)

sage: p.set_objective(p.sum(matching[e]
....: for e in g.edges(labels = False)))

sage: for v in g:
....: p.add_constraint(p.sum(matching[e]
....: for e in g.edges_incident(v, labels = False)) <= 1)
sage: p.solve()
5.0

sage: matching = p.get_values(matching)
sage: [e for e, b in matching.iteritems() if b == 1]
[(0, 1), (4, 9), (6, 8), (5, 7), (2, 3)]

Exercise 66 (Dominating set). A dominating set in a graph is a set of vertices S
such that each vertex which is not in S has at least one neighbour in S. Write a linear
program over the integers to find a dominating set whose cardinality is minimal for the
Petersen graph.

17.4.3 Flow

In this section we present yet another fundamental algorithm in graph theory:
maximum flow! Given a pair of vertices s and t of a directed graph G (that is, the
edges have a direction, see Figure 17.1), this problem consists in sending from
s to t a maximum flow, using the edges of G. Each one of these edges has an
associated maximal capacity — i.e., the maximal flow which can go through it.

The definition of this problem is almost its formulation as a linear program:
we are looking for a real value associated to each edge, representing the intensity
of flow going through it, under two types of constraints:

• the amount of flow arriving at a vertex (different from s or t) should equal
the amount of flow leaving it;

• the flow over an edge cannot exceed its capacity.
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Figure 17.1 – A maximum flow problem over Chvátal’s graph.

This being said, we are left with the task of maximising the flow leaving s: all
of it will end up in t, as the other vertices are sending just as much as they receive.
We can model the flow problem with the following linear program (assuming that
the capacities of the edges are all equal to 1):

max:
∑

sv∈E(G)

fsv

such that: ∀v ∈ V (G)\{s, t},
∑

vu∈E(G)

fvu =
∑

uv∈E(G)

fuv

∀uv ∈ E(G), fuv ≤ 1.

We will solve the flow problem over an orientation of Chvátal’s graph (cf.
Figure 17.1), in which all edges have a capacity of 1:

sage: g = graphs.ChvatalGraph()
sage: g = g.minimum_outdegree_orientation()

sage: p = MixedIntegerLinearProgram()
sage: f = p.new_variable()
sage: s, t = 0, 2

sage: for v in g:
....: if v == s or v == t: continue
....: p.add_constraint(
....: p.sum(f[v,u] for u in g.neighbors_out(v)) ==
....: p.sum(f[u,v] for u in g.neighbors_in(v)))

sage: for e in g.edges(labels = False): p.add_constraint( f[e] <= 1 )

sage: p.set_objective(p.sum( f[s,u] for u in g.neighbors_out(s)))

sage: p.solve()
2.0
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17.5 Generating Constraints — Application to
the Traveling Salesman Problem

Even though the examples presented in previous sections seem to offer a great
deal of expressive power, the “interpretation” of an optimisation problem (or
an existence problem) given by its formulation as a linear program is a rather
arbitrary choice. The same problem can be solved via different formulations,
and the performance among them can differ considerably. We are led to taking
advantage of the capacities of MILP solvers in a smarter way, by asking them to
solve linear programs without specifying all constraints, and adding only those
which are necessary as long as the solution is approached: this technique is indeed
essential if the number of constraints is too big for writing them down explicitly
when we create the linear program. We are preparing to solve the Hamiltonian
cycle problem (a particular case of the traveling salesman problem).

Figure 17.2 – A grid of size 4× 6 used to test our implementations.

We say that a cycle C ⊆ E(G) which is contained in a graph G is Hamiltonian
if it visits all vertices of G. Testing the existence of a Hamiltonian cycle in a
given graph is an NP-complete problem: in consequence, we should not expect to
solve this problem promptly, although we can still attempt to model it as a linear
program. Consider the following initial formulation:

• associate to each edge a binary variable be which indicates if the edge is
included in the circuit C or not;

• impose that each vertex should have exactly two of its incident edges in C.

Unfortunately, this is not an exact formulation. Indeed, it can happen that
the solution obtained with this formulation is a disjoint union of several cycles —
each vertex would have two neighbours in C, but it may not be possible to go
from vertex v to a vertex u using only the edges which belong to C.

However, it is possible to provide a more complex and exact algorithm (known
as Miller-Tucker-Zemlin’s formulation):
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Figure 17.3 – A possible solution of the inexact formulation.

• to each vertex v of the graph, we associate an integer iv representing the
stage at which the cycle C is visiting it, with iv0 = 0 for a fixed vertex v0;

• to each edge uv of G we associate two binary variables buv and bvu indicating
if the edge belongs to the cycle C (and to know in which direction this edge
is being used);

• we impose that each vertex should have an outgoing and incoming edge in
C;

• an edge uv belongs to C only if iu < iv (the edges go in the increasing sense
with respect to the order in which they are visited).

We can rewrite this algorithm in terms of linear equations in a few lines:

max: no objective function

such that: ∀u ∈ V (G),
∑

uv∈E(G)

buv = 1

∀u ∈ V (G),
∑

uv∈E(G)

bvu = 1

∀uv ∈ E(G\v0), iu − iv + |V (G)|buv ≤ |V (G)| − 1
iv − iu + |V (G)|bvu ≤ |V (G)| − 1

∀v ∈ V (G), iv ≤ |V (G)| − 1
buv is a binary variable
iv is an integer variable.

In this formulation, there is a coefficient |V (G)|, which often indicates that
the solver will not be able to efficiently solve the linear program. Therefore, we
will use an alternative modelling approach for the Hamiltonian cycle. Consider
the following simple observation: if there exists a Hamiltonian cycle C in our
graph, then there exists for every proper subset S of vertices at least two edges
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of C, which enter or leave S. If we denote by S̄ the set of edges having exactly
one end in S, then we obtain the following formulation (identifying the variables
buv and bvu):

max: no objective function

such that: ∀u ∈ V (G),
∑

uv∈E(G)

buv = 2

∀S ⊆ V (G), ∅ 6= S 6= V (G),
∑
e∈S̄

ve ≥ 2

buv is a binary variable.

It would be unlikely that we can directly use the previous formulation to solve a
Hamiltonian cycle problem, even for a small grid such as the one with 4× 6 = 24
elements: the constraints over the sets S would be 224 − 2 = 16 777 214. On the
other hand, the branch-and-bound method (or branch-and-cut) used by linear
inequality solvers is well adapted to generating constraints during the resolution
of the linear program1. Generating constraints for the Hamiltonian cycle problem
corresponds to the following steps:

• create a linear program — without objective function — having one binary
variable per edge;

• for each vertex add a constraint imposing a degree 2;

• solve the linear program;

• while the current solution is not a Hamiltonian cycle (it is then a sub-
graph having several connected components), let S be one of its connected
components, and add the constraint imposing that at least two edges leave S.

Fortunately for us, it is algorithmically fast to verify that the current solution
is invalid and to generate the corresponding constraint. Using the method of
generating constraints with Sage, here is how we can solve the Hamiltonian cycle
problem over our grid:

sage: g = graphs.Grid2dGraph(4, 6)
sage: p = MixedIntegerLinearProgram()
sage: b = p.new_variable(binary = True)

To avoid the difference between the variables b[u,v] and b[v,u], it is conve-
nient to create a lambda-function replacing the pair x, y with the set {x, y}:

sage: B = lambda x,y : b[frozenset([x,y])]

1This means that it is possible, once the linear program is solved, to add an additional
constraint and to solve the new linear program using some of the results obtained during the
previous computation.
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Figure 17.4 – A Hamiltonian cycle computed by generating constraints.

Let us now add the degree constraints:

sage: for u in g:
....: p.add_constraint( p.sum( B(u,v) for v in g.neighbors(u) ) == 2 )

It is now time to compute the first solution of our problem and to create the
graph representing it,

sage: p.solve()
0.0
sage: h = Graph()
sage: h.add_edges( [(u,v) for u, v in g.edges(labels = False)
....: if p.get_values(B(u,v)) == 1.0 ] )

then we begin our iterations:

sage: while not h.is_connected():
....: S = h.connected_components()[0]
....: p.add_constraint(
....: p.sum( B(u,v) for u,v
....: in g.edge_boundary(S, labels = False))
....: >= 2)
....: zero = p.solve()
....: h = Graph()
....: h.add_edges( [(u,v) for u,v in
....: g.edges(labels = False)
....: if p.get_values(B(u,v)) == 1.0 ] )

In less than a dozen iterations (an interesting economy of computations with
respect to 224 − 2) we obtain an admissible solution (cf. Figure 17.4). In terms
of performance, this solution method exceeds that of Miller-Tucker-Zemlin’s
formulation. When we implement both linear programs in Sage, for a random
graph G35,0.3 the computation times are the following:

sage: g = graphs.RandomGNP(35, 0.3)
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sage: %time MTZ(g)
CPU times: user 51.52 s, sys: 0.24 s, total: 51.76 s
Wall time: 52.84 s
sage: %time constraint_generation(g)
CPU times: user 0.23 s, sys: 0.00 s, total: 0.23 s
Wall time: 0.26 s
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A
Answers to Exercises

A.1 First Steps
Exercise 1 page 14. The command SR.var(’u’) creates the symbolic
variable u and assigns it to the computer variable u. The computer variable u
receives twice in a row its current value plus one, that is u+ 1, then u+ 2 (where
u remains the symbolic variable).

A.2 Analysis and Algebra

Exercise 2 page 28. (Computing a sum by recurrence)
sage: n = var('n'); pmax = 4; s = [n + 1]
sage: for p in [1..pmax]:
....: s += [factor(((n+1)^(p+1) - sum(binomial(p+1, j) * s[j]
....: for j in [0..p-1])) / (p+1))]
sage: s

Thus we obtain:
n∑
k=0

k = 1
2 (n+ 1)n,

n∑
k=0

k2 = 1
6 (n+ 1)(2n+ 1)n,

n∑
k=0

k3 = 1
4 (n+ 1)2

n2,

n∑
k=0

k4 = 1
30 (n+ 1)(2n+ 1)

(
3n2 + 3n− 1

)
n.

Exercise 3 page 31. (Computing a symbolic limit) To answer this question,
we use a symbolic function, and we compute its Taylor polynomial at 0 up to
order 3:
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sage: x, h, a = var('x, h, a'); f = function('f')
sage: g(x) = taylor(f(x), x, a, 3)
sage: phi(h) = (g(a+3*h) - 3*g(a+2*h) + 3*g(a+h) - g(a)) / h^3; phi(h)
diff(f(a), a, a, a)

The function g differs from f by a rest which is negligible compared to h3; thus
the function phi differs from the quotient by o(1); consequently phi has the
wanted limit at 0. As a conclusion,

lim
h→0

1
h3

(
f(a+ 3h)− 3f(a+ 2h) + 3f(a+ h)− f(a)

)
= f

′′′
(a).

This formula allows an approximate computation of the third derivative of f
without doing any derivation.

We can conjecture that the formula can be generalised in the following form:

lim
h→0

1
hn

(
n∑
k=0

(−1)n−k
(
n

k

)
f(a+ kh)

)
= f (n)(a).

To verify this formula for larger values of n, we can easily adapt the preceding
computation:

sage: n = 7; x, h, a = var('x h a'); f = function('f')
sage: g(x) = taylor(f(x), x, a, n)
sage: sum((-1)^(n-k) * binomial(n,k) * g(a+k*h) for k in (0..n)) / h^n
diff(f(a), a, a, a, a, a, a, a)

Exercise 4 page 31. (A formula due to Gauss)
1. We use successively trig_expand and trig_simplify:

sage: theta = 12*arctan(1/38) + 20*arctan(1/57) \
....: + 7*arctan(1/239) + 24*arctan(1/268)
sage: tan(theta).trig_expand().trig_simplify()
1

2. The arc-tangent function is concave on [0,+∞[, thus ∀x ≥ 0, arctan x ≤ x.

sage: 12*(1/38) + 20*(1/57) + 7*(1/239) + 24*(1/268)
37735/48039

From this we deduce:

θ = 12 arctan 1
38 + 20 arctan 1

57 + 7 arctan 1
239 + 24 arctan 1

268
≤ 12 · 1

38 + 20 · 1
57 + 7 · 1

239 + 24 · 1
268

= 37735
48039 <

π

2 .

Thus 0 < θ < π/2; also (cf. question 1) tan θ = 1 = tan π
4 and tan is

injective on [0, π/2[. We deduce that θ = π
4 .
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3. We substitute the Taylor polynomial in Gauss formula:

sage: x = var('x'); f(x) = taylor(arctan(x), x, 0, 21)
sage: approx = 4 * (12 * f(1/38) + 20 * f(1/57)
....: + 7 * f(1/239) + 24 * f(1/268))
sage: approx.n(digits = 50); pi.n(digits = 50)
3.1415926535897932384626433832795028851616168852864
3.1415926535897932384626433832795028841971693993751
sage: approx.n(digits = 50) - pi.n(digits = 50)
9.6444748591132486785420917537404705292978817080880e-37

Exercise 5 page 32. (Asymptotic expansion of a sequence) One can easily
show that xn ∼ nπ, that is xn = nπ + o(n).

We inject this equality into the following equation, which we obtain from
arctan x+ arctan(1/x) = π/2:

xn = nπ + π

2 − arctan
(

1
xn

)
.

We then inject the asymptotic expansions of xn obtained in this equation,
and so on (method of successive refinements).

As we know that at each step, an order-p expansion allows to get an order-
(p+ 2) expansion, we obtain, in four steps, an expansion at order 6. Anticipating
on Chapter 3, we can program these four steps into a loop:

sage: n = var('n'); phi = lambda x: n*pi + pi/2 - arctan(1/x)
sage: x = n*pi
sage: for i in range(4):
....: x = taylor(phi(x), n, infinity, 2*i); x

Finally, we obtain:

xn = 1
2 π + πn− 1

πn
+ 1

2
1
πn2 −

1
12

3π2 + 8
π3n3 + 1

8
π2 + 8
π3n4

− 1
240

15π4 + 240π2 + 208
π5n5 + 1

96
3π4 + 80π2 + 208

π5n6 +O

(
1
n7

)
.

Exercise 6 page 33. (A counter-example to Schwarz theorem due to Peano)
The partial applications f(x, 0) and f(0, x) are identically zero in (0, 0); without
any computation we deduce that ∂1f(0, 0) = ∂2f(0, 0) = 0. Then we compute
the second order partial derivative in (0, 0):

sage: h = var('h'); f(x, y) = x * y * (x^2 - y^2) / (x^2 + y^2)
sage: D1f(x, y) = diff(f(x,y), x); limit((D1f(0,h) - 0) / h, h=0)
-1
sage: D2f(x, y) = diff(f(x,y), y); limit((D2f(h,0) - 0) / h, h=0)
1
sage: g = plot3d(f(x, y), (x, -3, 3), (y, -3, 3))
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Figure A.1 – The Peano surface.

We deduce that ∂1∂2f(0, 0) = 1 and ∂2∂1f(0, 0) = −1. Thus, we get a counter-
example to Schwarz theorem (Figure A.1).

Exercise 7 page 34. (The BBP formula)
1. Let us first compare

un =
∫ 1/

√
2

0
f(t) · t8n dt and vn =

(
4

8n+1 −
2

8n+4 −
1

8n+5 −
1

8n+6

) ( 1
16
)n.

sage: n, t = var('n, t')
sage: v(n) = (4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6))*1/16 n̂
sage: assume(8*n+1>0)
sage: f(t) = 4*sqrt(2)-8*t^3-4*sqrt(2)*t^4-8*t^5
sage: u(n) = integrate(f(t) * t^(8*n), t, 0, 1/sqrt(2))
sage: (u(n)-v(n)).canonicalize_radical()
0

We deduce that un = vn. By the linearity of the integral, we get:

IN =
∫ 1/

√
2

0
f(t) ·

(
N∑
n=0

t8n

)
dt =

N∑
n=0

un =
N∑
n=0

vn = SN .

2. The radius of convergence of the power series
∑
n≥0 t

8n is 1, thus it converges
on the interval

[
0, 1√

2

]
. We can interchange integration and limit on this
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interval:

lim
N→∞

SN = lim
N→∞

∫ 1/
√

2

0
f(t) ·

(
N∑
n=0

t8n

)
dt

=
∫ 1/

√
2

0
f(t) ·

( ∞∑
n=0

t8n

)
dt

=
∫ 1/

√
2

0
f(t) · 1

1− t8 dt = J.

3. Now, we compute J :
sage: t = var('t'); J = integrate(f(t) / (1-t^8), t, 0, 1/sqrt(2))
sage: J.canonicalize_radical()
pi + 2*log(sqrt(2) + 1) + 2*log(sqrt(2) - 1)

To simplify this expression, we must tell Sage to combine the sum of
logarithms:

sage: J.simplify_log().canonicalize_radical()
pi

At the end, we get the formula:
+∞∑
n=0

(
4

8n+ 1 −
2

8n+ 4 −
1

8n+ 5 −
1

8n+ 6

)(
1
16

)n
= π.

With this formula, we get another way to approximate π:
sage: l = sum(v(n) for n in (0..40)); l.n(digits=60)
3.14159265358979323846264338327950288419716939937510581474759
sage: pi.n(digits=60)
3.14159265358979323846264338327950288419716939937510582097494
sage: print("%e" % (l-pi).n(digits=60))
-6.227358e-54

Exercise 8 page 35. (Polynomial approximation of the sine function) We
provide the vector space C∞([−π, π]) with the dot product 〈f | g〉 =

∫ π
−π fg. The

wanted polynomial is the orthogonal projection of the sine function on the vector
subspace R5[X]. Finding this polynomial reduces to the solution of a linear
system: indeed, P is the projection of the sine function if and only if the function
(P − sin) is orthogonal to every vector of the canonical basis of R5[X]. Here is
the Sage code:

sage: x = var('x'); ps = lambda f, g : integral(f * g, x, -pi, pi)
sage: n = 5; a = var('a0, a1, a2, a3, a4, a5')
sage: P = sum(a[k] * x^k for k in (0..n))
sage: equ = [ps(P - sin(x), x^k) for k in (0..n)]
sage: sol = solve(equ, a)
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sage: P = sum(sol[0][k].rhs() * x^k for k in (0..n)); P
105/8*(pi^4 - 153*pi^2 + 1485)*x/pi^6 - 315/4*(pi^4 - 125*pi^2 +
1155)*x^3/pi^8 + 693/8*(pi^4 - 105*pi^2 + 945)*x^5/pî 10
sage: g = plot(P,x,-6,6,color='red') + plot(sin(x),x,-6,6,color='blue')
sage: g.show(ymin = -1.5, ymax = 1.5)

The wanted polynomial is:

P = 105
8

π4 − 153π2 + 1485
π6 x− 315

4
π4 − 125π2 + 1155

π8 x3

+ 693
8

π4 − 105π2 + 945
π10 x5.

Then, we can plot the sine function and its orthogonal projection to see the
quality of this polynomial approximation (Figure A.2).

-4 -3 -2 -1 1 2 3 4

-1

-0.5

0.5

1

Figure A.2 – Least square approximation of the sine function.

Exercise 9 page 35. (Gauss’ problem) Let us first prove formally the relations;
then we will perform the numerical application. We first define the vectors −→ri :

sage: p, e = var('p, e')
sage: theta1, theta2, theta3 = var('theta1, theta2, theta3')
sage: r(theta) = p / (1 - e * cos(theta))
sage: r1 = r(theta1); r2 = r(theta2); r3 = r(theta3)
sage: R1 = vector([r1 * cos(theta1), r1 * sin(theta1), 0])
sage: R2 = vector([r2 * cos(theta2), r2 * sin(theta2), 0])
sage: R3 = vector([r3 * cos(theta3), r3 * sin(theta3), 0])

• We verify that −→S + e ·
(−→ı ∧ −→D) is the null vector:

sage: D = R1.cross_product(R2)+R2.cross_product(R3)+R3.cross_product(R1)
sage: S = (r1 - r3) * R2 + (r3 - r2) * R1 + (r2 - r1) * R3
sage: i = vector([1, 0, 0]); V = S + e * i.cross_product(D)
sage: V.simplify_full()
(0, 0, 0)
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from which we get the wanted relation. We deduce e =
ww−→Swwww−→ı ∧−→Dww =

ww−→Swwww−→Dww , as −→D

is normal to the orbit plane, and thus to −→ı .
• Then we verify that −→ı is colinear with −→S ∧ −→D :

sage: S.cross_product(D).simplify_full()[1:3]
(0, 0)

The result shows that the second and third components are zero.
• We also verify that p · −→S + e ·

(−→ı ∧ −→N) is the null vector,

sage: N = r3 * R1.cross_product(R2) + r1 * R2.cross_product(R3)\
....: + r2 * R3.cross_product(R1)
sage: W = p * S + e * i.cross_product(N)
sage: W.simplify_full()
(0, 0, 0)

from which we get the required relation. We deduce that:

p = e

www−→ı ∧ −→Nwwwwww−→Swww = e

www−→Nwwwwww−→Swww =

www−→Nwwwwww−→Dwww ,
as −→N is normal to the orbit plane, and thus to −→ı .
• From a classical property of conic curves, we have a = p

1−e2 .
• Now, let us perform the numerical application:

sage: R1=vector([0,1,0]); R2=vector([2,2,0]); R3=vector([3.5,0,0])
sage: r1 = R1.norm(); r2 = R2.norm(); r3 = R3.norm()
sage: D = R1.cross_product(R2) + R2.cross_product(R3) \
....: + R3.cross_product(R1)
sage: S = (r1 - r3) * R2 + (r3 - r2) * R1 + (r2 - r1) * R3
sage: N = r3 * R1.cross_product(R2) + r1 * R2.cross_product(R3) \
....: + r2 * R3.cross_product(R1)
sage: e = S.norm() / D.norm(); p = N.norm() / D.norm()
sage: a = p/(1-e^2); c = a * e; b = sqrt(a^2 - c^2)
sage: X = S.cross_product(D); i = X / X.norm()
sage: phi = atan2(i[1], i[0]) * 180 / pi.n()
sage: print("%.3f %.3f %.3f %.3f %.3f %.3f" % (a, b, c, e, p, phi))
2.360 1.326 1.952 0.827 0.746 17.917

Thus, we finally find:

a ≈ 2.360, b ≈ 1.326, c ≈ 1.952, e ≈ 0.827, p ≈ 0.746, ϕ ≈ 17.917.

The inclination of the ellipse major axis is 17.92 degrees.
Exercise 10 page 36. (Basis of vector subspace)

1. The set S of the solutions of the homogeneous system associated to A is a
vector subspace of R5. We obtain the dimension and a basis of S with the
function right_kernel:
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sage: A = matrix(QQ, [[ 2, -3, 2, -12, 33],
....: [ 6, 1, 26, -16, 69],
....: [10, -29, -18, -53, 32],
....: [ 2, 0, 8, -18, 84]])
sage: A.right_kernel()
Vector space of degree 5 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -7/34 5/17 1/17]
[ 0 1 -3/34 -10/17 -2/17]

So, S is the vector plane generated by the two above vectors (read them
line by line, as below).

2. We extract from the given generating family a basis of the wanted vec-
tor space as follows. We reduce the matrix A (made with the columns
u1, u2, u3, u4, u5) row-by-row until we get the Hermite form:

sage: H = A.echelon_form(); H
1 0 4 0 −3
0 1 2 0 7
0 0 0 1 −5
0 0 0 0 0


Let F = Vect(u1, u2, u3, u4, u5) be the family of column vectors of A. It is
a vector subspace of R4. Looking at H, we observe that the pivots belong
to columns 1, 2 and 4. More precisely, we have:{(u1, u2, u4) is a free family,

u3 = 4u1 + 2u2,
u5 = −3u1 + 7u2 − 5u4.

Thus F = Vect(u1, u2, u3, u4, u5) = Vect(u1, u2, u4) is generated by the free
family (u1, u2, u4); thus (u1, u2, u4) is a basis of F . More directly, we could
also use the column_space method:

sage: A.column_space()
Vector space of degree 4 and dimension 3 over Rational Field
Basis matrix:
[ 1 0 0 1139/350]
[ 0 1 0 -9/50]
[ 0 0 1 -12/35]

3. Now, we are looking for equations of the generated subspace: we reduce the
matrix A, augmented by a right-hand side, computing with Sage in a ring
of polynomials with four variables:

sage: S.<x, y, z, t> = QQ[]
sage: C = matrix(S, 4, 1, [x, y, z, t])
sage: B = block_matrix([A, C], ncols=2)
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sage: C = B.echelon_form()
sage: C[3,5]*350

−1139x+ 63y + 120z + 350t

We deduce that F is the hyperplane of R4 defined by
−1139x+ 63 y + 120 z + 350 t = 0.

It is also possible to get this equation by computing the left kernel of A,
which gives the coordinates of the linear forms defining F (here, there is
only one form):

sage: K = A.left_kernel(); K
Vector space of degree 4 and dimension 1 over Rational Field
Basis matrix:
[ 1 -63/1139 -120/1139 -350/1139]

A basis of the hyperplane defined by this linear form is given by the following
vectors already obtained by A.column_space():

sage: matrix(K.0).right_kernel()
Vector space of degree 4 and dimension 3 over Rational Field
Basis matrix:
[ 1 0 0 1139/350]
[ 0 1 0 -9/50]
[ 0 0 1 -12/35]

Exercise 11 page 37. (A matrix equation) Let us first define the A and C
matrices:

sage: A = matrix(QQ, [[-2, 1, 1], [8, 1, -5], [4, 3, -3]])
sage: C = matrix(QQ, [[1, 2, -1], [2, -1, -1], [-5, 0, 3]])

As the equation A = BC is linear, the set of solutions is an affine subspace of
M3(R). We search for a particular solution of our equation.

sage: B = C.solve_left(A); B
[ 0 -1 0]
[ 2 3 0]
[ 2 1 0]

Then, we determine the general form of the solutions, that is to say, the left kernel
of C:

sage: C.left_kernel()
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[1 2 1]

Then, we obtain the general form of the solutions of our equation:

sage: x, y, z = var('x, y, z'); v = matrix([[1, 2, 1]])
sage: B = B + (x*v).stack(y*v).stack(z*v); B
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(a) Pascal conchoids.
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(b) Terms of a recurrent sequence.

[ x 2*x - 1 x]
[ y + 2 2*y + 3 y]
[ z + 2 2*z + 1 z]

It is easy to check the result:

sage: A == B*C
True

In conclusion, the set of the solutions is a 3-dimensional affine subspace:
 x 2x− 1 x

y + 2 2 y + 3 y
z + 2 2 z + 1 z

 ∣∣∣ (x, y, z) ∈ R3

 .

A.4 Graphics

Exercise 12 page 79. (Pascal conchoids)

sage: t = var('t'); liste = [a + cos(t) for a in srange(0, 2, 0.1)]
sage: g = polar_plot(liste, (t, 0, 2 * pi)); g.show(aspect_ratio = 1)

Exercise 13 page 82. (Drawing the terms of a recurrent sequence)

sage: f = lambda x: abs(x**2 - 1/4)
sage: def liste_pts(u0, n):
....: u = u0; liste = [[u0,0]]
....: for k in range(n):
....: v, u = u, f(u)
....: liste.extend([[v,u], [u,u]])
....: return(liste)
sage: g = line(liste_pts(1.1, 8), rgbcolor = (.9,0,0))
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Figure A.3 – Integral curves of x2y′ − y = 0.

sage: g += line(liste_pts(-.4, 8), rgbcolor = (.01,0,0))
sage: g += line(liste_pts(1.3, 3), rgbcolor = (.5,0,0))
sage: g += plot(f, -1, 3, rgbcolor = 'blue')
sage: g += plot(x, -1, 3, rgbcolor = 'green')
sage: g.show(aspect_ratio = 1, ymin = -.2, ymax = 3)

Exercise 14 page 85. (First order differential equation, resolved)

sage: x = var('x'); y = function('y')
sage: DE = x^2 * diff(y(x), x) - y(x) == 0
sage: desolve(DE, y(x))
_C*e^(-1/x)
sage: g = plot([c*e^(-1/x) for c in srange(-8, 8, 0.4)], (x, -3, 3))
sage: y = var('y')
sage: g += plot_vector_field((x^2, y), (x,-3,3), (y,-5,5))
sage: g.show()

Exercise 15 page 87. (Predator-prey model)

sage: from sage.calculus.desolvers import desolve_system_rk4
sage: f = lambda x, y: [a*x-b*x*y,-c*y+d*b*x*y]
sage: x, y, t = var('x, y, t')
sage: a, b, c, d = 1., 0.1, 1.5, 0.75
sage: P = desolve_system_rk4(f(x,y), [x,y],\
....: ics=[0,10,5], ivar=t, end_points=15)
sage: Ql = [[i,j] for i,j,k in P]; p = line(Ql, color='red')
sage: p += text("Rabbits", (12,37), fontsize=10, color='red')
sage: Qr = [[i,k] for i,j,k in P]; p += line(Qr, color='blue')
sage: p += text("Foxes", (12,7), fontsize=10, color='blue')
sage: p.axes_labels(["time", "population"])
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Figure A.4 – An autonomous differential system.

sage: p.show(gridlines = True)

One can also redo the right-hand graphic of Figure 4.12:

sage: n = 10; L = srange(6, 18, 12 / n); R = srange(3, 9, 6 / n)
sage: def g(x,y): v = vector(f(x, y)); return v / v.norm()
sage: q = plot_vector_field(g(x, y), (x, 0, 60), (y, 0, 36))
sage: for j in range(n):
....: P = desolve_system_rk4(f(x,y), [x,y],
....: ics=[0,L[j],R[j]], ivar=t, end_points=15)
....: Q = [[j,k] for i,j,k in P]
....: q += line(Q, color=hue(.8-j/(2*n)))
sage: q.axes_labels(["rabbits", "foxes"]); q.show()

Exercise 16 page 87. (An autonomous differential system)

sage: from scipy import integrate
sage: def dX_dt(X, t=0): return [X[1], 0.5*X[1] - X[0] - X[1]^3]
sage: t = srange(0, 40, 0.01); x0 = srange(-2, 2, 0.1); y0 = 2.5
sage: CI = [[i, y0] for i in x0] + [[i, -y0] for i in x0]
sage: def g(x,y): v = vector(dX_dt([x, y])); return v / v.norm()
sage: x, y = var('x, y'); n = len(CI)
sage: q = plot_vector_field(g(x, y), (x, -3, 3), (y, -y0, y0))
sage: for j in xrange(n):
....: X = integrate.odeint(dX_dt, CI[j], t)
....: q += line(X, color=(1.7*j/(4*n),1.5*j/(4*n),1-3*j/(8*n)))
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sage: X = integrate.odeint(dX_dt, [0.01,0], t)
sage: q += line(X, color = 'red'); q.show()

Exercise 17 page 87. (Flow around a cylinder and the Magnus effect)

sage: from scipy import integrate
sage: t = srange(0, 40, 0.2)
sage: n = 35; CI_cart = [[4, .2 * i] for i in range(n)]
sage: CI = map(lambda x: [sqrt(x[0]^2+x[1]^2),\
....: pi - arctan(x[1]/x[0])], CI_cart)
sage: for alpha in [0.1, 0.5, 1, 1.25]:
....: dX_dt = lambda X, t=0: [cos(X[1])*(1-1/X[0]^2), \
....: -sin(X[1]) * (1/X[0]+1/X[0]^3) + 2*alpha/X[0]^2]
....: q = circle((0, 0), 1, fill=True, rgbcolor='purple')
....: for j in range(n):
....: X = integrate.odeint(dX_dt, CI[j], t)
....: Y = [[u[0]*cos(u[1]), u[0]*sin(u[1])] for u in X]
....: q += line(Y, xmin = -4, xmax = 4, color='blue')
....: q.show(aspect_ratio = 1, axes = False)

(a) Case α = 0.1. (b) Case α = 0.5. (c) Case α = 1.

Figure A.5 – The Magnus effect.

The solutions corresponding to α = 0.1, 0.5, 1 are shown on Figure A.5.

A.5 Computational Domains
Exercise 18 page 96.

sage: def ndigits(x): return x.ndigits()
sage: o = 720; ndigits(o)
3

If the object x does not have a method ndigits, we obtain an error:

sage: ndigits("abcd")
...
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AttributeError: 'str' object has no attribute 'ndigits'

Exercise 19 page 100. The floating-point numbers RealField(p), with
a precision of p bits, all share the same type, but as their parent contains the
information about precision, the parents of RealField(p) and RealField(q)
differ:

sage: a = Reals(17)(pi); b = Reals(42)(pi)
sage: type(a) == type(b)
True
sage: parent(a), parent(b)
(Real Field with 17 bits of precision, Real Field with 42 bits of

precision)

It is more difficult to find two objects with the same parent but different types.
Here is an example:

sage: a = 0.1; b = 0.1*1
sage: type(a), type(b)
(<type 'sage.rings.real_mpfr.RealLiteral'>, <type 'sage.rings.real_mpfr.

RealNumber'>)
sage: parent(a) == parent(b)
True

This example needs some explanation. The type RealLiteral shows that Sage
keeps a in the form of a character string, not doing any floating-point number
conversion which would lose its exact value, as 1/10 cannot be represented exactly
in binary. On the contrary, as b is the result of a computation, it is converted into
a floating-point number, with the default precision of 53 bits. One can observe
the difference by computing a− 1/10 and b− 1/10 with a precision of 100 bits:

sage: Reals(100)(a)-1/10
0.00000000000000000000000000000
sage: Reals(100)(b)-1/10
5.5511151231257629805955278152e-18

Here is a more advanced example where objects with the same parent have
different possible implementations:

sage: E = CombinatorialFreeModule(QQ, [1,2,3])
sage: H = Hom(E,E); H.rename("H")
sage: C = E.category(); C
Category of finite dimensional vector spaces with basis over Rational

Field
sage: phi1 = E.module_morphism(on_basis=lambda i: E.term(i), codomain=E)
sage: phi2 = E.module_morphism(on_basis=lambda i: E.term(i),
....: triangular="lower", codomain=E)
sage: phi3 = E.module_morphism(diagonal=lambda i: 1, codomain=E,
....: category=C)
sage: phi1.parent() == phi2.parent() == phi3.parent() == H
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True
sage: type(phi1)
<class 'sage.modules.with_basis.morphism.

ModuleMorphismByLinearity_with_category'>
sage: type(phi2)
<class 'sage.modules.with_basis.morphism.

TriangularModuleMorphismByLinearity_with_category'>
sage: type(phi3)
<class 'sage.modules.with_basis.morphism.

DiagonalModuleMorphism_with_category'>

A.6 Finite Fields and Number Theory
Exercise 20 page 122. We assume n = pqr with p < q < r. Necessarily
p3 ≤ n, thus the main function becomes:

sage: def enum_carmichael(N, verbose=True):
....: p = 3; s = 0
....: while p^3 <= N:
....: s += enum_carmichael_p(N, p, verbose); p = next_prime(p)
....: return s

where the function enum_carmichael_p counts Carmichael numbers multiple
of p, which are of the form a + λm with λ a non-negative integer, a = p and
m = p(p− 1), since n should be multiple of p, and n− 1 multiple of p− 1:

sage: def enum_carmichael_p (n, p, verbose):
....: a = p; m = p*(p-1); q = p; s = 0
....: while p*q^2 <= n:
....: q = next_prime(q)
....: s += enum_carmichael_pq(n, a, m, p, q, verbose)
....: return s

The function enum_carmichael_pq counts Carmichael numbers multiple of pq,
which are of the form a′+µm′ with µ a non-negative integer, where a′ ≡ a mod m,
a′ ≡ q mod q(q − 1), and m′ is multiple both of m = p(p− 1) and q(q − 1). We
use the crt function to solve simultaneous modular constraints, while eliminating
cases where there is no solution, otherwise Sage would give an error. We also
require a′ > pq2 to have r > q:

sage: def enum_carmichael_pq(n,a,m,p,q,verbose):
....: if (a-q) % gcd(m,q*(q-1)) <> 0: return 0
....: s = 0
....: a = crt (a, q, m, q*(q-1)); m = lcm(m,q*(q-1))
....: while a <= p*q^2: a += m
....: for t in range(a, n+1, m):
....: r = t // (p*q)
....: if is_prime(r) and t % (r-1) == 1:
....: if verbose:
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....: print((p*q*r, factor(p*q*r)))

....: s += 1

....: return s

With these functions, we obtain:

sage: enum_carmichael(10^4)
(561, 3 * 11 * 17)
(1105, 5 * 13 * 17)
(2465, 5 * 17 * 29)
(1729, 7 * 13 * 19)
(2821, 7 * 13 * 31)
(8911, 7 * 19 * 67)
(6601, 7 * 23 * 41)
7
sage: enum_carmichael(10^5, False)
12
sage: enum_carmichael(10^6, False)
23
sage: enum_carmichael(10^7, False)
47

Exercise 21 page 124. We start by writing a function aliq computing the
aliquot sequence starting from n, and stopping as soon as one reaches 1 or a
cycle:

sage: def aliq(n):
....: l = [n]
....: while n <> 1:
....: n = sigma(n) - n
....: if n in l: break
....: l.append(n)
....: return l
sage: l = aliq(840)
sage: len(l), l[:5], l[-5:]
(748, [840, 2040, 4440, 9240, 25320], [2714, 1606, 1058, 601, 1])

sage: p = points([(i, log(l[i])/log(10)) for i in range(len(l))])

See the graph in Figure A.6.
Exercise 22 page 125. (Masser-Gramain constant) For question 1, let C be
the border circle of a smallest disk. Without loss of generality, we can assume the
origin O is on the circle — indeed, there is at least one point of Z2 on the circle,
otherwise the disk is not optimal. We can also assume that the circle center lies in
the first quadrant (by rotating the disk if needed by a multiple of π/2 around O).
We will admit that we also have two points A and B of the first quadrant on the
circle, thus the circle C includes the triangle OAB. The bound rk <

√
k/π allows

us to bound the points A and B, since their distance to O is at most 2
√
k/π. We

can assume that one of A and B, for example A, lies in the second octant (if both
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Figure A.6 – The graph of aliquot sequence 840.

lie in the first octant, by symmetry with respect to the line x = y we can bring
them back in the second octant). We can also assume that the angle in A of the
triangle OAB is acute (by exchanging A and B if needed, and after a symmetry
with respect to the line x = y if they lie in different octants). The abscissa of A
therefore satisfies xA <

√
2k/π, its ordinate satisfies xA ≤ yA <

√
4k/π − x2

A.
For the point B, we have 0 ≤ xB < 2

√
k/π, and 0 ≤ xAyB + yAxB ≤ x2

A + y2
A

(acute angle in A). This yields the following code, where the rk_aux routine
computes the number of points in the disk centered in (xc/d, yc/d), and of radius√
r2/d, where xc, yc, d, r2 are all integers.
sage: def rk_aux(xc, yc, d, r2):
....: s = 0
....: xmin = ceil((xc - sqrt(r2))/d)
....: xmax = floor((xc + sqrt(r2))/d)
....: for x in range(xmin,xmax+1):
....: r3 = r2 - (d*x-xc)^2 # (d*y-yc)^2 <= r2 - (d*x-xc)^2
....: ymin = ceil((yc - sqrt(r3))/d)
....: ymax = floor((yc + sqrt(r3))/d)
....: s += ymax + 1 - ymin
....: return s

sage: def rk(k): # returns (r_k^2, xc, yc)
....: if k == 2: return 1/4, 1/2, 0
....: dmax = (2*sqrt(k/pi)).n(); xamax = (sqrt(2*k/pi)).n()
....: sol = (dmax/2)^2, 0, 0, 0
....: for xa in range(0, floor(xamax)+1):
....: # if xa=0, ya > 0 since A should differ from O
....: yamin = max(xa, 1)
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....: for ya in range(yamin, floor(sqrt(dmax^2-xâ 2))+1):

....: xbmin = 0 # we want xb*ya <= xâ 2+ya^2

....: if xa == 0:

....: xbmin = 1 # O, A, B should not be aligned

....: xbmax = min(floor(dmax), floor((xa*xa+ya*ya)/ya))

....: for xb in range(xbmin, xbmax+1):

....: ybmax = floor(sqrt(dmax^2-xb̂ 2))

....: if xa > 0: # we want xb*ya+yb*xa <= xâ 2+ya^2

....: tmp = floor((xa*xa+ya*ya-xb*ya)/xa)

....: ybmax = min(ybmax, tmp)

....: # if xb=0, yb > 0 since B should differ from O

....: ybmin = 0

....: if xb == 0:

....: ybmin = 1

....: for yb in range(ybmin,ybmax+1):

....: d = 2*abs(xb*ya - xa*yb)

....: if d <> 0:

....: ra2 = xâ 2+ya^2; rb2 = xb̂ 2+yb^2

....: xc = abs(ra2*yb - rb2*ya)

....: yc = abs(rb2*xa - ra2*xb)

....: r2 = ra2*rb2*((xa-xb)^2+(ya-yb)^2)

....: m = rk_aux(xc,yc,d,r2)

....: if m >= k and r2/d^2 < sol[0]:

....: sol = r2/d^2, xc/d, yc/d

....: return sol

sage: for k in range(2,10): print((k, rk(k)))
(2, (1/4, 1/2, 0))
(3, (1/2, 1/2, 1/2))
(4, (1/2, 1/2, 1/2))
(5, (1, 0, 1))
(6, (5/4, 1/2, 1))
(7, (25/16, 3/4, 1))
(8, (2, 1, 1))
(9, (2, 1, 1))

For question 2, a solution is the following:
sage: def plotrk(k):
....: r2, x0, y0 = rk(k); r = n(sqrt(r2))
....: var('x, y')
....: c = implicit_plot((x-x0)^2+(y-y0)^2-r2,
....: (x, x0-r-1/2, x0+r+1/2),(y, y0-r-1/2, y0+r+1/2))
....: center = points([(x0,y0)], pointsize=50, color='black')
....: # we want (i-x0)^2+(j-y0)^2 <= r2
....: # thus |i-x0| <= r and |j-y0| <= r2 - (i-x0)^2
....: l = [(i, j) for i in range(ceil(x0-r), floor(x0+r)+1)
....: for j in range(ceil(y0-sqrt(r^2-(i-x0)^2)),
....: floor(y0+sqrt(r2-(i-x0)^2))+1)]
....: d = points(l, pointsize=100)
....: return (c+center+d).show(aspect_ratio=1, axes=True)
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Question 3 requires a little more work. Let us write Si,j =
∑j
k=i 1/(πr2

k). From
the upper bound (6.2) for rk, we obtain r2

k < (k− 1)/π, thus 1/(πr2
k) > 1/(k− 1),

and Sn,N >
∑N
k=n 1/(k − 1) >

∫ N+1
n

dk/k = log((N + 1)/n).
The lower bound (6.2) gives 1/(πr2

k) < 1/k + 2/k3/2 for k ≥ 407, which
leads for n ≥ 407 to Sn,N <

∑N
k=n(1/k + 2/k3/2) <

∫ N
n−1(1/k + 2/k3/2)dk =

log(N/(n− 1)) + 4/
√
n− 1− 4/

√
N , thus:

S2,n−1 + log(1/n) ≤ δ ≤ S2,n−1 + log(1/(n− 1)) + 4/
√
n− 1.

sage: def bound(n):
....: s = sum(1/pi/rk(k)[0] for k in range(2,n+1))
....: return float(s+log(1/n)), float(s+log(1/(n-1))+4/sqrt(n-1))
sage: bound(60)
(1.7327473659779615, 2.2703101282176377)

We deduce 1.73 < δ < 2.28, thus the approximation δ ≈ 2.00 with an error
bounded by 0.28.
Exercise 23 page 126. We use here the same notations as in Beauzamy’s
article. We write si = 1 − xi − · · · − xk with sk+1 = 1. We must thus have
x1 + · · ·+ xi−1 ≤ si, and in particular x2 ≤ x1 ≤ s2. Let us define

C1 =
∫ s2

x1=x2

xn1
1 dx1 = 1

n1 + 1(sn1+1
2 − xn1+1

2 ).

sage: x1, x2, s2 = var('x1, x2, s2')
sage: n1 = 9; C1 = integrate(x1^n1, x1, x2, s2); C1
1/10*s2̂ 10 - 1/10*x2^10

Then we have x3 ≤ x2 ≤ s3 = s2 + x2, thus by replacing s2 by s3 − x2 in C1, and
by integrating for x2 from x3 to s3/2 — since x1 + x2 ≤ s3 and x2 ≤ x1 — we
get:

sage: x3, s3 = var('x3, s3')
sage: n2 = 7; C2 = integrate(C1.subs(s2=s3-x2)*x2^n2, x2, x3, s3/2); C2
44923/229417943040*s3̂ 18 - 1/80*s3̂ 10*x3^8 + 1/9*s3̂ 9*x3^9 - 9/20*s3^8*x3̂ 10
+ 12/11*s3̂ 7*x3^11 - 7/4*s3̂ 6*x3̂ 12 + 126/65*s3̂ 5*x3̂ 13 - 3/2*s3̂ 4*x3̂ 14
+ 4/5*s3̂ 3*x3̂ 15 - 9/32*s3̂ 2*x3̂ 16 + 1/17*s3*x3̂ 17

and so on. At each iteration Ci is an homogeneous polynomial in xi+1 and si+1,
with rational coefficients and of total degree n1 + . . .+ni+ i. For the last variable,
we integrate between xk = 0 and xk = 1/k.

By assuming known bounds on the numerator and denominator of I, we can
compute I modulo p for different prime numbers not dividing the denominator
of I, and deduce by the Chinese Remainder Theorem the value of I modulo the
product of those prime numbers, and finally using rational reconstruction the
exact value of I.
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A.7 Polynomials
Exercise 24 page 129.

1. For example, but there exist many other solutions, we can take
sage: x = polygen(QQ, 'y'); y = polygen(QQ, 'x')

Let us recall the difference, in Sage, between Python variables and math-
ematical variables. Python variables are names, used for programming;
they only denote a position in the memory. The mathematical variables,
and polynomials are part of them, are completely different by nature: they
are Sage objects which can be stored in Python variables. If we create
an indeterminate called ’x’, we are not forced to store it in the Python
variable x — and we can also store ’y’ there.

2. We first assign the indeterminate ’x’ of the polynomials with rational
coefficients to the Python variable x. Then, the expression x+1 evaluates as
the polynomial x+ 1 ∈ Q[x] which we assign to the variable p. After that
we assign the integer 2 to the variable x. This operation has no effect on p,
which keeps the value x+ 1; this x is the indeterminate: it has nothing to
do with the Python variable whose value is now 2. Now p+x evaluates as
x+ 3, and thus, the final value of p is x+ 3.

Exercise 25 page 135. A simple solution is to carry out successive Euclidean
divisions by the Chebyshev polynomials by increasing powers: if the polynomial
degree is n, we set p = cnTn + Rn−1 with cn ∈ Q and degRn−1 ≤ n − 1, then
Rn−1 = cn−1Tn−1 and so on.

In the Sage program below, instead of returning the computed coefficients cn
as a simple list, we prefer to build a symbolic expression where the polynomial
Tn is represented as an “inert” function (that is to say kept in a non-evaluated
form) T(n,x).

sage: T = sage.symbolic.function_factory.function('T', nargs=2)
sage: def to_chebyshev_basis(pol):
....: (x,) = pol.variables()
....: res = 0
....: for n in xrange(pol.degree(), -1, -1):
....: quo, pol = pol.quo_rem(chebyshev_T(n, x))
....: res += quo * T(n, x)
....: return res

Let us test this function. To check the results, we can just substitute the
function which computes the Chebyshev polynomials into our “inert” function T,
and then expand the result:

sage: p = QQ['x'].random_element(degree=6); p
4*x^6 + 4*x^5 + 1/9*x^4 - 2*x^3 + 2/19*x^2 + 1
sage: p_cheb = to_chebyshev_basis(p); p_cheb
1/8*T(6, x) + 1/4*T(5, x) + 55/72*T(4, x) + 3/4*T(3, x) +
2713/1368*T(2, x) + T(1, x) + 1069/456*T(0, x)
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sage: p_cheb.substitute_function(T, chebyshev_T).expand()
4*x^6 + 4*x^5 + 1/9*x^4 - 2*x^3 + 2/19*x^2 + 1

Exercise 26 page 135. A direct translation of the algorithm in Sage gives
something like:

sage: def mydiv(u, v, n):
....: v0 = v.constant_coefficient()
....: quo = 0; rem = u
....: for k in xrange(n+1):
....: c = rem[0]/v0
....: rem = (rem - c*v) >> 1 # shifting the coefficients
....: quo += c*x^k
....: return quo, rem

(One can apply this function to larger examples and measure the execution time
and try to make the code more efficient, keeping the same algorithm.)

But the division by increasing powers up to order n is the series expansion of
the rational function u/v truncated at order n+ 1. Using the division of formal
power series (see §7.5), we can compute the division by increasing powers like in
the following function.

sage: def mydiv2(u, v, n):
....: x = u.parent().gen()
....: quo = (u / (v + O(x^(n+1)))).polynomial()
....: rem = (u - quo*v) >> (n+1)
....: return quo, rem

The line quo = ... uses the fact that, if we add O(·) to a polynomial, it is
converted into a truncated series and that the default precision used when dividing
a polynomial by a series is that of the divisor.

Exercise 27 page 136. First of all, u1010000 has about 1010000 expected digits.
Computing it entirely is absolutely out of reach. But as we are only interested
by the last five digits, it is not a real problem: we will compute everything
modulo 105. The fast exponentiation method as presented in §3.2.4 needs tens
of thousands of matrix multiplications, the matrix size being 1000× 1000, with
coefficients in Z/105Z. Each of these matrix products costs about one billion
multiplications, or less with a fast algorithm. It is not impossible, but a test with
only one multiplication suggests that the full computation with Sage would take
at least one hour:

sage: Mat = MatrixSpace (IntegerModRing(10^5), 1000)
sage: m1, m2 = (Mat.random_element() for i in (1,2))
sage: %time p = m1*m2
CPU times: user 48 ms, sys: 4 ms, total: 52 ms
Wall time: 54.3 ms

It is possible to do much better from the algorithmic point of view. Let us
denote S the shift operator (an)n∈N 7→ (an+1)n∈N. The equation satisfied by u =
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(un)n∈N can be rewritten as P (S)·u = 0, with P (x) = x1000−23x729+5x2−12x−7.
For all N (especially N = 10100), the uN term is the first one in the sequence
SN · u. Let R be the remainder of the Euclidean division of xN by P . As
P (S) · u = 0, we have SN · u = R(S) · u. Thus it is only necessary to compute
the image of xN in (Z/105Z) [x]/〈P (x)〉. We obtain the following code which, on
the same machine, computes the result in less than twenty seconds:

sage: Poly.<x> = Integers(10^5)[]
sage: P = x^1000 - 23*x^729 + 5*x^2 - 12*x - 7
sage: Quo.<s> = Poly.quo(P)
sage: op = ŝ (10^10000)
sage: add(op[n]*(n+7) for n in range(1000))
63477

The last five digits are 63477. The difference in computing time between both
methods grows rapidly with the order of the recurrence.
Exercise 28 page 147.

1. Let us assume that asun+s + as−1un+s−1 + · · · + a0un = 0 for all n ≥ 0,
and let us denote u(z) =

∑∞
n=0 unz

n. Let Q(z) = as + as−1z + · · ·+ a0z
s.

Then

S(z) = Q(z)u(z) =
∞∑
n=0

(asun + as−1un−1 + · · ·+ a0un−s)zn,

with the convention that un = 0 for n < 0. The coefficient of zn in S(z) is
zero for n ≥ s, thus S(z) is a polynomial and u(z) = S(z)/Q(z). The de-
nominator Q(z) is the reciprocal polynomial of the characteristic polynomial
of the recurrence, and the numerator encodes the initial conditions.

2. The first coefficients are enough to guess an order-3 recurrence satisfied by
the given coefficients. Using rational_reconstruct we obtain a rational
function. By computing a series expansion of this rational function we
recover all given coefficients and the possible next ones:

sage: p = previous_prime(2^30); ZpZx.<x> = Integers(p)[]
sage: s = ZpZx([1, 1, 2, 3, 8, 11, 34, 39, 148, 127, 662, 339])
sage: num, den = s.rational_reconstruct(x^12, 6, 6)
sage: S = ZpZx.completion(x)
sage: map(lift_sym, S(num)/S(den))
[1, 1, 2, 3, 8, 11, 34, 39, 148, 127, 662, 339, 3056, 371,
14602, -4257, 72268, -50489, 369854, -396981]

(The lift_sym function is defined in the chapter of the book. All of the
first 20 coefficients of the sequence are much lower than 229, so that we can
allow us to unroll the recurrence modulo a prime near 230, then lift up the
result in Z, rather than the converse.)
With berlekamp_massey, we directly obtain the characteristic polynomial
of the recurrence with coefficients in Z:
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sage: berlekamp_massey([1, 1, 2, 3, 8, 11, 34, 39, 148, 127])
x^3 - 5*x + 2

Then we verify that all coefficients satisfy un+3 = 5un+1 − 2un, and from
there we guess the missing coefficients 72268 = 5 · 14602− 2 · 371, −50489 =
5 · (−4257)− 2 · 14602 and so forth.

Exercise 29 page 147. We first construct a polynomial of degree 3 which
satisfies the given interpolation conditions:

sage: R.<x> = GF(17)[]
sage: pairs = [(0,-1), (1,0), (2,7), (3,5)]
sage: s = R(QQ['x'].lagrange_polynomial(pairs)); s
6*x^3 + 2*x^2 + 10*x + 16
sage: [s(i) for i in range(4)]
[16, 0, 7, 5]

We reduce the exercise to a problem of rational reconstruction:

p/q ≡ s mod x(x− 1)(x− 2)(x− 3).

As s cannot be inverted modulo x(x − 1)(x − 2)(x − 3) (recall that s(1) = 0),
there is no solution with a constant p. With deg p = 1, we find:

sage: s.rational_reconstruct(mul(x-i for i in range(4)), 1, 2)
(15*x + 2, x^2 + 11*x + 15)

Exercise 30 page 150. We proceed as in the example: we rewrite the equation
tan x =

∫ x
0 (1 + tan2 t) dt and we search for a fixed point, starting from the initial

condition tan(0) = 0.
sage: S.<x> = PowerSeriesRing(QQ)
sage: t = S(0)
sage: for i in range(7): # here t is correct up to degree 2i+1
....: # with O(x^15) we prevent the truncation order to grow
....: t = (1+t^2).integral() + O(x^15)
sage: t
x + 1/3*x^3 + 2/15*x^5 + 17/315*x^7 + 62/2835*x^9 + 1382/155925*x^11
+ 21844/6081075*x^13 + O(x^15)

A.8 Linear Algebra
Exercise 31 page 171. (Minimal polynomial of a vector)

1. ϕA is an annihilating polynomial for all vectors ei of the canonical basis. It
is therefore a multiple of all ϕA,ei . Let ψ be the least common multiple of
the ϕA,ei . It verifies ψ|ϕA. Moreover, ψ(A) =

[
ψ(A)e1 . . . ψ(A)en

]
= 0

is annihilating the matrix A. Hence ϕA|ψ. Since these polynomials are both
monic, they are equal.

2. In this case all ϕA,ei are of the form χ`i , where χ is an irreducible polynomial.
From the previous question, ϕA coincides with the polynomial χ`i having
the largest multiplicity `i.
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3. Let ϕ be an annihilating polynomial for the vector e = ei + ej and let ϕ1 =
ϕA,ei , ϕ2 = ϕA,ej . We have ϕ2(A)ϕ(A)ei = ϕ2(A)ϕ(A)e−ϕ(A)ϕ2(A)ej = 0.
Hence ϕ2ϕ is annihilating the vector ei and is therefore divisible by ϕ1. Now
since ϕ1 and ϕ2 are coprime, we have ϕ1|ϕ. Similarly one shows that ϕ2|ϕ,
thus ϕ is a multiple of ϕ1ϕ2. Now ϕ1ϕ2 is annihilating e, thus ϕ = ϕ1ϕ2.

4. P1 and P2 being coprime, there exist two polynomials α and β such that 1 =
αP1+βP2. Thus for any vector x, we have x = α(A)P1(A)x+β(A)P2(A)x =
x2 + x1, where x1 = β(A)P2(A)x and x2 = α(A)P1(A)x. As ϕA = P1P2,
P1 is annihilating x1 = β(A)P2(A)x (similarly P2 is annihilating x2). If for
any vector x, x1 = 0, then βP2 is annihilating A and is therefore a multiple
of P1P2, hence 1 = P1(α+ γP2), which implies degP1 = 0. Therefore, there
exists a nonzero x1 such that P1 is an annihilating polynomial of x1. We will
now show that P1 is minimal for x1: let P̃1 be an annihilating polynomial
of x1. Then P̃1(A)P2(A)x = P2(A)P̃1(A)x1 + P̃1(A)P2(A)x2 = 0, hence
P̃1P2 is a multiple of ϕA = P1P2. Hence P1|P̃1, and P1 is therefore the
minimal polynomial of x1. The reasoning is identical for x2.

5. For each factor ϕmii , there exists a vector xi for which ϕmii is the minimal
polynomial and the vector x1 + · · ·+ xk has minimal polynomial ϕA.

6. One first computes the minimal polynomial of the matrix A.
sage: A = matrix(GF(7),[[0,0,3,0,0],[1,0,6,0,0],[0,1,5,0,0],
....: [0,0,0,0,5],[0,0,0,1,5]])
sage: P = A.minpoly(); P
x^5 + 4*x^4 + 3*x^2 + 3*x + 1
sage: P.factor()
(x^2 + 2*x + 2) * (x^3 + 2*x^2 + x + 4)

It has maximal degree.
sage: e1 = identity_matrix(GF(7),5)[0]
sage: e4 = identity_matrix(GF(7),5)[3]
sage: A.transpose().maxspin(e1)
[(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)]
sage: A.transpose().maxspin(e4)
[(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)]
sage: A.transpose().maxspin(e1 + e4)
[(1, 0, 0, 1, 0), (0, 1, 0, 0, 1), (0, 0, 1, 5, 5),
(3, 6, 5, 4, 2), (1, 5, 3, 3, 0)]

The method maxspin iterates a vector on the left. We therefore apply it on
the transpose of the matrix so as to produce the list of linearly independent
Krylov iterates from the vectors e1 and e4. The minimal polynomial of e1
thus has degree 3, that of e4 has degree 2, and that of e1 + e4 has degree 5.
Note that the shape of the matrix implies that the vectors e1 and e4
produce iterates that are also vectors of the canonical basis. This form is
also called the Frobenius normal form (see §8.2.3). It describes how the
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matrix decomposes the space into invariant cyclic subspaces generated by
vectors of the canonical basis.

Exercise 32 page 178. (Test whether two matrices are similar)

sage: def Similar(A, B):
....: F1, U1 = A.frobenius(2)
....: F2, U2 = B.frobenius(2)
....: if F1 == F2:
....: return True, ~U2*U1
....: else:
....: return False, F1 - F2
sage: B = matrix(ZZ, [[0,1,4,0,4],[4,-2,0,-4,-2],[0,0,0,2,1],
....: [-4,2,2,0,-1],[-4,-2,1,2,0]])
sage: U = matrix(ZZ, [[3,3,-9,-14,40],[-1,-2,4,2,1],[2,4,-7,-1,-13],
....: [-1,0,1,4,-15],[-4,-13,26,8,30]])
sage: A = (U^-1 * B * U).change_ring(ZZ)
sage: ok, V = Similar(A, B); ok
True
sage: V
[ 1 2824643/1601680 -6818729/1601680

-43439399/11211760 73108601/11211760]
[ 0 342591/320336 -695773/320336

-2360063/11211760 -10291875/2242352]
[ 0 -367393/640672 673091/640672

-888723/4484704 15889341/4484704]
[ 0 661457/3203360 -565971/3203360

13485411/22423520 -69159661/22423520]
[ 0 -4846439/3203360 7915157/3203360

-32420037/22423520 285914347/22423520]
sage: ok, V = Similar(2*A, B); ok
False

A.9 Polynomial Systems
Exercise 33 page 180. Given a polynomial ring, the test_poly function
returns the sum of all monomials of total degree bounded by the value of the
parameter deg. Its code is quite compact, and deserves some explanations.

The first instruction constructs and assigns to the local variable monomials a
set (represented by a specific object SubMultiset, see §15.2) of lists, each one
having deg elements, whose product corresponds to a term of the polynomial:

sage: ring = QQ['x,y,z']; deg = 2
sage: tmp1 = [(x,)*deg for x in (1,) + ring.gens()]; tmp1
[(1, 1), (x, x), (y, y), (z, z)]
sage: tmp2 = flatten(tmp1); tmp2
[1, 1, x, x, y, y, z, z]



430 ANNEX A. ANSWERS TO EXERCISES

sage: monomials = Subsets(tmp2, deg, submultiset=True); monomials
SubMultiset of [y, y, 1, 1, z, z, x, x] of size 2
sage: monomials.list()
[[y, y], [y, 1], [y, z], [y, x], [1, 1], [1, z], [1, x], [z, z], [z, x],

[x, x]]

For this purpose, we start by adding 1 to the tuple of indeterminates, replace
each element of the result by a tuple of deg copies of itself, and group these tuples
in a list. Let us notice the syntax (x,) which denotes a tuple with only one
element, as well as the operators + and * for the concatenation and repetition
of tuples. The obtained list of tuples is transformed by the flatten command
into a list containing exactly deg times each indeterminate and the constant 1.
The Subsets function with the option submultiset=True then computes the
subsets of cardinality deg of the multiset (set with repetitions) of elements from
this list. The monomials object is iterable: thus (mul(m) for m in monomials)
is a Python generator which iterates over the built monomials by passing to mul
the lists representing the subsets. This generator is finally given to add.

The last line could be replaced by add(map(mul, monomials)). We might
also write ((1,) + ring.gens())*deg to simplify the expression [(x,)*deg for
x in (1,) + ring.gens()].
Exercise 34 page 180. An example of the help page PolynomialRing? suggests
a solution: to obtain a non-trivial family of indeterminates — here, indexed by
prime numbers — we give to PolynomialRing a list built by comprehension
(see §3.3.2):

sage: ['x%d' % n for n in [2,3,5,7]]
['x2', 'x3', 'x5', 'x7']
sage: R = PolynomialRing(QQ, ['x%d' % n for n in primes(40)])
sage: R.inject_variables()
Defining x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37

The inject_variables method initialises the Python variables x2, x3, ..., each
one containing the corresponding generator of R.
Exercise 35 page 186. We check that (3, 2, 1) is the only real root, for example
with

sage: R.<x,y,z> = QQ[]
sage: J = R.ideal(x^2*y*z-18, x*y^3*z-24, x*y*z^4-6)
sage: J.variety(AA)
[{x: 3, z: 1, y: 2}]

or with
sage: V = J.variety(QQbar)
sage: [u for u in V if all(a in AA for a in u.values())]
[{z: 1, y: 2, x: 3}]

A substitution (x, y, z) 7→ (ωax, ωby, ωcz) with ωk = 1 keeps the system
invariant if and only if (a, b, c) is a root modulo k of the homogeneous linear
system of matrix
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sage: M = matrix([ [p.degree(v) for v in (x,y,z)]
....: for p in J.gens()]); M
[2 1 1]
[1 3 1]
[1 1 4]

By computing its determinant

sage: M.det()
17

we see that k = 17 works. It just remains to find a non-zero kernel element:

sage: M.change_ring(GF(17)).right_kernel()
Vector space of degree 3 and dimension 1 over Finite Field of size 17
Basis matrix:
[1 9 6]

Exercise 36 page 198. It is almost trivial:

sage: L.<a> = QQ[sqrt(2-sqrt(3))]; L
Number Field in a with defining polynomial x^4 - 4*x^2 + 1
sage: R.<x,y> = QQ[]
sage: J1 = (x^2 + y^2 - 1, 16*x^2*y^2 - 1)*R
sage: J1.variety(L)
[{y: 1/2*a^3 - 2*a, x: -1/2*a}, {y: 1/2*a^3 - 2*a, x: 1/2*a},
{y: -1/2*a, x: 1/2*a^3 - 2*a}, {y: -1/2*a, x: -1/2*a^3 + 2*a},
{y: 1/2*a, x: 1/2*a^3 - 2*a}, {y: 1/2*a, x: -1/2*a^3 + 2*a},
{y: -1/2*a^3 + 2*a, x: -1/2*a}, {y: -1/2*a^3 + 2*a, x: 1/2*a}]

Thus, for example, we have for the fifth solution above:

x = 1
2 (2−

√
3)3/2 − 2

√
2−
√

3, y = 1
2

√
2−
√

3 .

Exercise 37 page 202. We have seen how to obtain a basis B of the Q-vector
space Q[x, y]/J2:

sage: R.<x,y> = QQ[]; J2 = (x^2+y^2-1, 4*x^2*y^2-1)*R
sage: basis = J2.normal_basis(); basis
[x*y^3, y^3, x*y^2, y^2, x*y, y, x, 1]

We then compute the image of B by mx, and we deduce the matrix of mx in the
basis B:

sage: xbasis = [(x*p).reduce(J2) for p in basis]; xbasis
[1/4*y, x*y^3, 1/4, x*y^2, -y^3 + y, x*y, -y^2 + 1, x]
sage: mat = matrix([ [xp[q] for q in basis]
....: for xp in xbasis])
sage: mat
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[ 0 0 0 0 0 1/4 0 0]
[ 1 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 1/4]
[ 0 0 1 0 0 0 0 0]
[ 0 -1 0 0 0 1 0 0]
[ 0 0 0 0 1 0 0 0]
[ 0 0 0 -1 0 0 0 1]
[ 0 0 0 0 0 0 1 0]

The polynomial χx and its roots are then given by (see Chapters 2 and 8):

sage: charpoly = mat.characteristic_polynomial(); charpoly
x^8 - 2*x^6 + 3/2*x^4 - 1/2*x^2 + 1/16
sage: solve(SR(charpoly), SR(x))
[x == -1/2*sqrt(2), x == 1/2*sqrt(2)]

We see on this example that the roots of χ are the abscissas of the points of V (J2).
For a random ideal J , let us assume χ(λ) = 0 with λ ∈ C. Thus λ is an

eigenvalue of mx. Let p ∈ Q[x, y] \ J a representative of an eigenvector associated
to λ: we have xp = λp + q for a given q ∈ J . Since p /∈ J , we can find
(x0, y0) ∈ V (J) such that p(x0, y0) 6= 0, and we have then

(x0 − λ) p(x0, y0) = q(x0, y0) = 0,

thus λ = x0.
Exercise 38 page 211. The expressions sin θ, cos θ, sin(2θ) and cos(2θ) are
related by the classical trigonometric formulas

sin2 θ + cos2 θ = 1, sin(2θ) = 2(sin θ)(cos θ), cos(2θ) = cos2 θ − sin2 θ.

To simplify the notations, let us write c = cos θ and s = sin θ. The ideal

〈u− (s+ c), v − (2sc+ c2 − s2), s2 + c2 − 1〉

from Q[s, c, u, v] translates the definitions of u(θ) and v(θ) from the exercise,
together with the relation between sine and cosine. For a monomial order which
eliminates s and c first, the canonical form of s6 modulo this ideal gives the
wanted result.

sage: R.<s, c, u, v> = PolynomialRing(QQ, order='lex')
sage: Rel = ideal(u-(s+c), v-(2*s*c+c^2-s^2), s^2+c^2-1)
sage: Rel.reduce(s^6)
1/16*u^2*v^2 - 3/8*u^2*v + 7/16*u^2 + 1/8*v^2 - 1/8*v - 1/8

A.10 Differential Equations and Recurrences
Exercise 39 page 221. (Separable variable equations)

1. Let us use the same method as in Section 10.1.2:

sage: x = var('x')
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sage: y = function('y')(x)
sage: ed = (desolve(y*diff(y,x)/sqrt(1+y^2) == sin(x),y)); ed
sqrt(y(x)^2 + 1) == _C - cos(x)

The same problem appears. We impose that _C-cos(x) is positive:

sage: c = ed.variables()[0]
sage: assume(c-cos(x) > 0)
sage: sol = solve(ed,y) ; sol
[y(x) == -sqrt(_C^2 - 2*_C*cos(x) + cos(x)^2 - 1),
y(x) == sqrt(_C^2 - 2*_C*cos(x) + cos(x)^2 - 1)]

sage: P = Graphics()
sage: for j in [0,1]:
....: for k in range(0,20,2):
....: P += plot(sol[j].substitute(c==2+0.25*k).rhs(),x,-3,3)
sage: P

-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

2. Same method:

sage: sol = desolve(diff(y,x)==sin(x)/cos(y), y, show_method=True)
sage: sol
[sin(y(x)) == _C - cos(x), 'separable']
sage: solve(sol[0],y)
[y(x) == -arcsin(-_C + cos(x))]

Exercise 40 page 222. (Homogeneous equations) We verify that the equation
xyy′ = x2 + y2 defined on ]0,+∞[ and on ]−∞, 0[ is homogeneous, then we try
to solve it by the change of unknown function indicated in the example treated
in Section 10.1.2.

sage: x = var('x')
sage: y = function('y')(x)
sage: id(x) = x
sage: u = function('u')(x)
sage: d = diff(u*id,x)
sage: DE = (x*y*d == x**2+y**2).substitute(y == u*id)
sage: eq = desolve(DE,u)
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sage: sol = solve(eq,u)
sage: sol
[u(x) == -sqrt(2*_C + 2*log(x)), u(x) == sqrt(2*_C + 2*log(x))]
sage: Y = [x*sol[0].rhs() , x*sol[1].rhs()]
sage: Y[0]
-sqrt(2*_C + 2*log(x))*x

We can add conditions on x (with assume) to remember that the equation is
not defined in 0.

A.11 Floating-Point Numbers
Exercise 41 page 239. We propose two solutions.

1. Let us make the calculation without the methods of the class RealField
which give the significand and the exponent of a number. We first check
that 299 < 1030 < 2100 (we remark that 1030 = (103)10 ≈ (210)10).

sage: R100=RealField(100)
sage: x=R100(10^30)
sage: x>2^99
True
sage: x<2^100
True

Then, we compute the significand:

sage: e=2^100
sage: s1=10^30
sage: significand=[]
sage: nbdigits=0 # number of significant digits
sage: while s1>0:
....: e/=2
....: if e<=s1:
....: significand.append(1)
....: s1-=e
....: else:
....: significand.append(0)
....: nbdigits+=1
sage: print(significand)
[1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0,
1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1,
1, 1, 1, 0, 1, 0, 1, 0, 0, 1]

sage: print("number of significant digits: " + str(nbdigits))
number of significant digits: 70

All the binary digits of the significand beyond the seventieth are zero. Thus
we add 2−100 to the significand to obtain the nearest number from 1030,
and we get the result: the value of x.ulp() is 2−100 · 2100 = 1.
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2. Using the method sign_mantissa_exponent() of the class RealField, we
obtain directly:

sage: R100=RealField(100)
sage: x=R100(10^30)
sage: s,m,e = x.sign_mantissa_exponent()
sage: s,m,e
(1, 1000000000000000000000000000000, 0)

The command m.binary() reveals that we get the same significand in both
cases.

Exercise 42 page 242.
1. Let us calculate the values of α, β and γ in the formula:

un = α 100n+1 + β 6n+1 + γ 5n+1

α 100n + β 6n + γ 5n . (A.1)

Why not use Sage for this? We use the values of u0, u1 and u2 to obtain a
system of equations where the unknowns are α, β and γ and then, we solve
it. Let us define the general solution:

sage: var("u0 u1 u2 alpha beta gamma n")
(u0, u1, u2, alpha, beta, gamma, n)
sage: recurrence = lambda a,b: 111-1130/a+3000/(a*b)
sage: gener1 = lambda n: (alpha*100^n+beta*6^n+gamma*5^n)
sage: solGen = lambda n: gener1(n+1)/gener1(n)

We calculate u2 as a function of u1 and u0 to get the system:
sage: u2 = recurrence(u1,u0)
sage: s = [u2==solGen(2),u1==solGen(1),u0==solGen(0)]
sage: t = [s[i].substitute(u0=2,u1=-4) for i in range(0,3)]

then, we solve it:
sage: solve(t,alpha,beta,gamma)
[[alpha == 0, beta == -3/4*r1, gamma == r1]]

This shows that γ can have any value.
We must verify that we really got the general solution, that is to say that
equation (A.1) is verified for all n:

sage: alpha=0
sage: beta = -3/4*gamma
sage: final=solGen(n)-recurrence(solGen(n-1),solGen(n-2))
sage: final.simplify_full()
0

Since we can take any value for γ, let us take γ = 4 and then we have
β = −3 and α = 0.
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2. Now, we define a procedure which implements the recurrence, using exact
coefficients so that we can reuse it with numbers of different precisions:

sage: def recur(x1,x0):
....: return 111 - 1130/x1 + 3000/(x0*x1)

Let us take the initial conditions in RealField(), so that the calculation
takes place in this domain:

sage: u0 = 2.
sage: u1 = -4.
sage: for i in range(1,25):
....: x = recur(u1,u0)
....: print((i, x))
....: u0 = u1
....: u1 = x
(1, 18.5000000000000)
(2, 9.37837837837838)
(3, 7.80115273775217)
(4, 7.15441448097533)
(5, 6.80678473692481)
(6, 6.59263276872179)
..................
(23, 99.9999986592167)
(24, 99.9999999193218)

Clearly, the sequence converges to 100!

3. The explanation of this behaviour is just that the terms un−1 and un−2
are computed with a rounding error, and thus, the formula (A.1) no longer
defines the general solution of the recurrence.
Let us search for the stationary values of the recurrence:

sage: var("x")
x
sage: solve(x==recurrence(x,x),x)
[x == 100, x == 5, x == 6]

We observe that there are 3 stationary values: 100, 5 and 6. The convergence
to 100, as observed in the presence of rounding errors can be explained by
stability considerations for these 3 values (but this is out of the scope of
this exercise).

4. Increasing the precision does not change the limit; the sequence always
converges to 100:

sage: RL = RealField(5000)
sage: u0 = RL(2)
sage: u1 = RL(-4)
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sage: for i in range(1,2500):
....: x = recur(u1,u0)
....: u0 = u1
....: u1= x
sage: x
100.00000000000000000000000000000000000000000000000000000...

If only one of the ui is not computed exactly, then the sequence diverges (α
is not equal to zero).

5. With very few modifications to the program, we can initialise u0 and u1 as
integers (and do all computations in Q):

sage: u0 = 2
sage: u1 = -4
sage: for i in range(1,2500):
....: x = recur(u1,u0)
....: u0 = u1
....: u1 = x
sage: float(x)
6.0

We find the expected value 6.0, but if we print x, we see the huge quantity of
information used for the calculation (printing not reproduced here!). If we
print x-6, we verify that the limit of the sequence is not attained: there is
no reason for the memory size of x to decrease if we continue the iterations.

Exercise 43 page 251. Let I be an interval. If f(x) = 1 − x2, we
use the function x 7→ x2 extended to the interval I (see page 250). But when
we compute the extension of g(x) = 1 − x · x to I we compute the interval
I2 = {y · z, y ∈ I, z ∈ I}. Final results can differ:

sage: f = lambda x: x^2
sage: g = lambda x: x*x
sage: sage.rings.real_mpfi.printing_style = 'brackets'
sage: I = RIF(-1,1)
sage: f(I)
[0.00000000000000000 .. 1.0000000000000000]
sage: g(I)
[-1.0000000000000000 .. 1.0000000000000000]

A.12 Non-Linear Equations
Exercise 44 page 269. We have seen that the keyword return terminates the
execution of the function. It is sufficient to test whether f(u) is zero. To avoid
evaluating f(u) twice we store its value in a variable. We obtain the following
function:
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sage: def intervalgen(f, phi, s, t):
....: assert (f(s) * f(t) < 0), \
....: 'Wrong arguments: f(%s) * f(%s) >= 0)'%(s, t)
....: yield s
....: yield t
....: while 1:
....: u = phi(s, t)
....: yield u
....: fu = f(u)
....: if fu == 0:
....: return
....: if fu * f(s) < 0:
....: t = u
....: else:
....: s = u

Let us test this function with an equation having a known solution, for example
an affine function:

sage: f(x) = 4 * x - 1
sage: a, b = 0, 1
sage: phi(s, t) = (s + t) / 2
sage: list(intervalgen(f, phi, a, b))
[0, 1, 1/2, 1/4]

Exercise 45 page 269. The function phi passed as parameter to intervalgen
establishes the point where we must divide the interval. It is sufficient to define
the function:

sage: f(x) = 4 * sin(x) - exp(x) / 2 + 1
sage: a, b = RR(-pi), RR(pi)
sage: def phi(s, t): return RR.random_element(s, t)
sage: random = intervalgen(f, phi, a, b)
sage: iterate(random, maxit=10000)
After 19 iterations: 2.15848379485564

Exercise 46 page 278. It is natural to try to compute in PolynomialRing(SR,
’x’), which has a roots() method:

sage: basering.<x> = PolynomialRing(SR, 'x')
sage: p = x^2 + x
sage: p.roots(multiplicities=False)
[-1, 0]

We therefore obtain the following code.

sage: from collections import deque
sage: basering = PolynomialRing(SR, 'x')
sage: q, method = None, None
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sage: def quadraticgen(f, r, s):
....: global q, method
....: t = r - f(r) / f.derivative()(r)
....: method = 'newton'
....: yield t
....: pts = deque([(p, f(p)) for p in (r, s, t)], maxlen=3)
....: while True:
....: q = basering.lagrange_polynomial(pts)
....: roots = [r for r in q.roots(multiplicities=False) \
....: if CC(r).is_real()]
....: approx = None
....: for root in roots:
....: if (root - pts[2][0]) * (root - pts[1][0]) < 0:
....: approx = root
....: break
....: elif (root - pts[0][0]) * (root - pts[1][0]) < 0:
....: pts.pop()
....: approx = root
....: break
....: if approx:
....: method = 'quadratic'
....: else:
....: method = 'dichotomy'
....: approx = (pts[1][0] + pts[2][0]) / 2
....: pts.append((approx, f(approx)))
....: yield pts[2][0]

Now, it is possible to print the first terms of the sequence defined by Brent’s
method. But, these computations need a relatively long computing time (and
produce an output too large for a single page of this book).

sage: basering = PolynomialRing(SR, 'x')
sage: a, b = pi/2, pi
sage: f(x) = 4 * sin(x) - exp(x) / 2 + 1
sage: generator = quadraticgen(f, a, b)
sage: generator.next()
1/2*pi - (e^(1/2*pi) - 10)*e^(-1/2*pi)

Running the code above, a patient reader can visualise the arcs of parabola
used in the first terms of the sequence.

sage: generator = quadraticgen(f, a, b)
sage: g = plot(f, a, b, rgbcolor='blue')
sage: g += point((a, 0), rgbcolor='red', legend_label='0')
sage: g += point((b, 0), rgbcolor='red', legend_label='1')
sage: data = {'2': 'blue', '3': 'violet', '4': 'green'}
sage: for l, color in data.iteritems():
....: u = RR(generator.next())
....: print(u, method)
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....: g += point((u, 0), rgbcolor=color, legend_label=l)

....: if method == 'quadratic':

....: q = sum([c*x^d for d, c in enumerate(q.list())])

....: g += plot(q, 0, 5, rgbcolor=color)
2.64959209030252 newton
2.17792417785922 quadratic
2.15915701206506 quadratic
sage: g.show()

A.13 Numerical Linear Algebra

Exercise 47 page 286. From the Sherman–Morrison formula , the solution
of Bx = f is equivalent to the solution of Ax = σ(I + uvtA−1)f with σ =
(1 + vtA−1u)−1. Then we proceed in the following way.

1. We compute w solution of Aw = u, then σ = (1 + vtw)−1.

2. We compute z solution of Az = f , then g = vtz (which is a scalar).

3. Then, we calculate h = σ(f − gu) and we solve Ax = h; x is actually the
solution of Bx = f .

We remark that we have solved 3 linear systems with the matrix A, which is
factorised. All together we have solved 6 linear systems, each of them being
triangular. The cost of each of these resolutions is about n2 operations, much
less than the cost of a factorisation, which is about n3 operations. To verify the
Sherman–Morrison formula it is sufficient to right multiply the right-hand side of
the formula by A+ uvt and then to verify that the result is equal to the identity
matrix.

Exercise 48 page 290. We consider the Cholesky factorisation A = CCt, and
the singular value decomposition of C: C = UΣV t. Then, X = UΣU t. Indeed:
A = CCt = (UΣV t)(V ΣU t) = UΣU tUΣU t = X2.

Let us construct a random symmetric positive definite matrix:

sage: m = random_matrix(RDF,4)
sage: a = transpose(m)*m
sage: c = a.cholesky()
sage: U,S,V = c.SVD()
sage: X = U*S*transpose(U)

Now, we verify that X2 − a is zero (modulo rounding errors):

sage: M = (X*X-a)
sage: all(abs(M[i,j]) < 10 -̂14
....: for i in range(4) for j in range(4) )
True
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A.14 Numerical Integration
Exercise 49 page 316. (Computation of Newton-Cotes coefficients)

1. We remark that the degree of Pi is n− 1 (and thus, formula (14.1) can be
applied) and that Pi(j) = 0 for j ∈ {0, . . . , n− 1} and j 6= i, we deduce that∫ n−1

0
Pi(x) dx = wiPi(i)

that is

wi =
∫ n−1

0 Pi(x) dx
Pi(i)

.

2. Then it is easy to deduce how to compute the weights:
sage: x = var('x')
sage: def NCRule(n):
....: P = prod([x - j for j in xrange(n)])
....: return [integrate(P / (x-i), x, 0, n-1) \
....: / (P/(x-i)).subs(x=i) for i in xrange(n)]

3. With a simple change of variable, we get:∫ b

a

f(x) dx = b− a
n− 1

∫ n−1

0
f

(
a+ b− a

n− 1u
)

du.

4. Applying the preceding formula, we find the following program:
sage: def QuadNC(f, a, b, n):
....: W = NCRule(n)
....: ret = 0
....: for i in xrange(n):
....: ret += f(a + (b-a)/(n-1)*i) * W[i]
....: return (b-a)/(n-1)*ret

Before comparing this method with others from the precision point of view,
we can verify that it does not return inconsistent results:

sage: QuadNC(lambda u: 1, 0, 1, 12)
1
sage: N(QuadNC(sin, 0, pi, 10))
1.99999989482634

Let us compare our method with GSL on integrals I2 and I3:
sage: numerical_integral(x * log(1+x), 0, 1)
(0.25, 2.7755575615628914e-15)
sage: N(QuadNC(lambda x: x * log(1+x), 0, 1, 19))
0.250000000000001
sage: numerical_integral(sqrt(1-x^2), 0, 1)
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(0.785398167726482..., 9.042725224567119...e-07)
sage: N(pi/4)
0.785398163397448
sage: N(QuadNC(lambda x: sqrt(1-x^2), 0, 1, 20))
0.784586419900198

We remark that the precision of the result depends on the amount of used
points:

sage: [N(QuadNC(lambda x: x * log(1+x), 0, 1, n) - 1/4)
....: for n in [2, 8, 16]]
[0.0965735902799726, 1.17408932933522e-7, 2.13449050101566e-13]
sage: [N(QuadNC(lambda x: sqrt(1-x^2), 0, 1, n) - pi/4)
....: for n in [2, 8, 16]]
[-0.285398163397448, -0.00524656673640445, -0.00125482109302663]

A more interesting comparison between the different numerical integration
methods in Sage and our method QuadNC would need to turn it into an
adaptive method. Adaptive methods automatically subdivide the integration
interval like what is done by numerical_integral.

A.15 Enumeration and Combinatorics
Exercise 50 page 330. (Probability to draw a four-of-a-kind) Let us build the
set of fours-of-a-kind:

sage: Suits = FiniteEnumeratedSet(
....: ["Hearts", "Diamonds", "Spades", "Clubs"])
sage: Values = FiniteEnumeratedSet([2, 3, 4, 5, 6, 7, 8, 9, 10,
....: "Jack", "Queen", "King", "Ace"])
sage: FourOfaKind = cartesian_product([Arrangements(Values,2), Suits])

We have used FiniteEnumeratedSet instead of Set in order to specify the order
of suits and of values, and thus of fours-of-a-kind:

sage: FourOfaKind.list()
[([2, 3], 'Hearts'),
([2, 3], 'Diamonds'),
...
(['Ace', 'King'], 'Clubs')]

The above list starts with a four-of-a-kind of 2 with a 3 of hearts, and ends with
a four-of-a-kind of aces with a king of clubs. There are 624 fours-of-a-kind in
total:

sage: FourOfaKind.cardinality()
624

Relatively to the number of hands, we obtain a probability of 1 over 4165 to get
a four-of-a-kind when we draw a hand at random:
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sage: Cards = cartesian_product([Values, Suits])
sage: Hands = Subsets(Cards, 5)
sage: FourOfaKind.cardinality() / Hands.cardinality()
1/4165

Exercise 51 page 330. (Probability to draw a flush and a straight flush) To
choose a straight flush, we have to choose its smallest card (between 1 and 10)
and its suit. There are thus 40 straight flushes.

sage: StraightFlush = cartesian_product([range(1, 11), Suits])
sage: StraightFlush.cardinality()
40

It thus remains 5108 (non-straight) flushes:

sage: AllFlush = cartesian_product([Subsets(Values,5),Suits])
sage: AllFlush.cardinality() - StraightFlush.cardinality()
5108

Finally the probability to get a flush by drawing a hand at random is about 2
over 1000:

sage: _ / Hands.cardinality()
1277/649740
sage: float(_)
0.001965401545233478

It would be nicer to perform the above computation on sets — instead of
dealing with cardinalities —, by explicitly building the set of flushes as the
difference between AllFlush and StraightFlush. Yet there is no efficient generic
algorithm to compute the difference A \ B of two sets: without any additional
information, the best we can do is to scan all elements of A, and check if they are
in B. In the above computation, we have used the fact that B is included in A,
which Sage cannot guess a priori. Another difficulty, however easier to handle, is
that elements of A and B should be represented in the same way.
Exercise 52 page 330. We will here only deal with the case of the full hand,
made of a three-of-a-kind and a pair. Let us first write a function checking for
a full hand. For a shorter writing, we use the following method allowing us to
count the repetitions of letters in a word:

sage: Word(['a','b','b','a','a','b','a']).evaluation_dict()
{'a': 4, 'b': 3}

sage: def is_full_hand(hand):
....: suits = Word([value for (value, suit) in hand])
....: repetitions = sorted(suits.evaluation_dict().values())
....: return repetitions == [2,3]
sage: is_full_hand({(5, 'Diamonds'), (6, 'Diamonds'), (6, 'Hearts'),
....: (5, 'Spades'), (1, 'Spades')})
False
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sage: is_full_hand({(3, 'Clubs'), (3, 'Spades'), (3, 'Hearts'),
....: (2, 'Clubs'), (2, 'Spades')})
True

We now estimate experimentally the proportion of full hands. More generally,
the following function estimates the proportion of elements of the finite set S
satisfying predicate. It assumes that the set has a random_element method
with uniform distribution.

sage: def estimate_proportion(S, predicate, n):
....: count = 0
....: for i in range(n):
....: if predicate(S.random_element()):
....: count += 1
....: return count/n

sage: float(estimate_proportion(Hands, is_full_hand, 10000))
0.0014

Let us now perform the computation symbolically. To identify a full hand, we
have to choose a pair of distinct values, one for the three-of-a-kind, one for the
pair, and a set of three suits for the three-of-a-kind, and two suits for the pair:

sage: FullHands = cartesian_product([Arrangements(Values, 2),
....: Subsets(Suits, 3), Subsets(Suits, 2)])

Here is, for example, a full hand with a three-of-a-kind of twos, and a pair of
threes:

sage: FullHands.first()
([2, 3], {'Hearts', 'Spades', 'Diamonds'}, {'Hearts', 'Diamonds'})

The probability to draw a full hand is:
sage: float(FullHands.cardinality() / Hands.cardinality())
0.0014405762304921968

Exercise 53 page 330. (Counting by hand complete binary trees) There is
one complete binary tree with one leaf, and one with two leaves. For n = 3, 4 and
5 leaves, we find respectively 2, 5 and 14 trees (for n = 4, see Figure 15.1).
Exercise 54 page 340. The compositions of n with k parts have a one-
to-one correspondence with subsets of size k − 1 of {1, . . . , n − 1}: to the set
{i1, i2, . . . , ik−1} where 0 < i1 < i2 < · · · < ik−1 < n, we associate the compo-
sition (i1, i2 − i1, . . . , n − ik−1), and reciprocally. We deduce the enumeration
formulas: there are 2n−1 compositions of n, and among these

(
n−1
k−1
)
compositions

with k parts.
sage: n=6
sage: Compositions(n).cardinality(); 2^(n-1)
32
32
sage: n=6; k=3
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sage: Compositions(n, length=k).cardinality(); binomial(n-1, k-1)
10
10

To find back if these formulas are used, we can look at the code of the
cardinality command:

sage: C = Compositions(n)
sage: C.cardinality??

In the second case below, the name of the method used internally, namely
_cardinality_from_iterator, yields the answer: the cardinality is computed —
inefficiently — by iterating over all compositions.

sage: C = Compositions(5,length=3)
sage: C.cardinality
<bound method IntegerListsLex...._cardinality_from_iterator ...>

Exercise 55 page 343. Some examples:
sage: IntegerVectors(5,3).list()
[[5, 0, 0], [4, 1, 0], [4, 0, 1], [3, 2, 0], [3, 1, 1], [3, 0, 2],
...
[0, 4, 1], [0, 3, 2], [0, 2, 3], [0, 1, 4], [0, 0, 5]]

sage: OrderedSetPartitions(3).cardinality()
13
sage: OrderedSetPartitions(3).list()
[[{1}, {2}, {3}], [{1}, {3}, {2}], [{2}, {1}, {3}], [{3}, {1}, {2}],
...
[{1, 2}, {3}], [{1, 3}, {2}], [{2, 3}, {1}], [{1, 2, 3}]]

sage: OrderedSetPartitions(3,2).random_element()
[{1, 3}, {2}]

sage: StandardTableaux([3,2]).cardinality()
5
sage: StandardTableaux([3,2]).an_element()
[[1, 3, 5], [2, 4]]

Exercise 56 page 343. For small sizes, we obtain the permutation matrices:
sage: list(AlternatingSignMatrices(1))
[[1]]
sage: list(AlternatingSignMatrices(2))
[
[1 0] [0 1]
[0 1], [1 0]
]

The first negative sign appears for n = 3:
sage: list(AlternatingSignMatrices(3))
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[
[1 0 0] [0 1 0] [1 0 0] [ 0 1 0] [0 0 1] [0 1 0] [0 0 1]
[0 1 0] [1 0 0] [0 0 1] [ 1 -1 1] [1 0 0] [0 0 1] [0 1 0]
[0 0 1], [0 0 1], [0 1 0], [ 0 1 0], [0 1 0], [1 0 0], [1 0 0]
]

By looking at examples for a larger n, we can see that it consists of all matrices
with coefficients in {−1, 0, 1} such that, on each row and column, the non-zero
coefficients alternate between 1 and −1, starting and ending with 1.
Exercise 57 page 343. There are 25 vectors in (Z/2Z)5:

sage: GF(2)^5
Vector space of dimension 5 over Finite Field of size 2
sage: _.cardinality()
32

To build an invertible 3× 3 matrix with coefficients in Z/2Z, it suffices to choose
a first non-zero row vector (23 − 1 choices), then a second vector independent
from the first one (23 − 2 choices), then a third one independent from the first
two (23 − 22 choices). This gives:

sage: (2^3-2^0)*(2^3-2^1)*(2^3-2^2)
168

And indeed:

sage: GL(3,2)
General Linear Group of degree 3 over Finite Field of size 2
sage: _.cardinality()
168

The same reasoning yields the general formula, which is naturally expressed in
terms of the q-factorial:

n−1∏
k=0

(qn − qk) = qn(n−1)/2(q − 1)n[n]q!

Thus:

sage: from sage.combinat.q_analogues import q_factorial
sage: q = 2; n = 3
sage: q^(n*(n-1)/2) * (q-1)^n * q_factorial(n,q)
168
sage: q = 3; n = 5
sage: GL(n, q).cardinality()
475566474240
sage: q^(n*(n-1)/2) * (q-1)^n * q_factorial(n,q)
475566474240

Exercise 58 page 346. In the first case, Python first builds the list of
all results before giving it to the all function. In the second case, the iterator
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gives results incrementally to all, which can thus stop the iteration as soon as a
counter-example is found.
Exercise 59 page 346. The first line gives the list of the cubes of all integers
from −999 to 999. The next two lines search for a pair of cubes whose sum is
218. The last one is faster since it stops as soon as a solution is found.

sage: cubes = [t**3 for t in range(-999,1000)]
sage: %time exists([(x,y) for x in cubes for y in cubes],
....: lambda (x,y): x+y == 218)
CPU times: user 940 ms, sys: 104 ms, total: 1.04 s
Wall time: 1.06 s
(True, (-125, 343))
sage: %time exists(((x,y) for x in cubes for y in cubes),
....: lambda (x,y): x+y == 218)
CPU times: user 524 ms, sys: 4 ms, total: 528 ms
Wall time: 532 ms
(True, (-125, 343))

Moreover, it is more efficient in memory: if n is the length of the list of cubes,
the memory used is of order n instead of n2. This will be visible if one multiplies
n by ten.
Exercise 60 page 346.

• Compute the generating function
∑
s⊂S x

|s| of the subsets of {1, . . . , 8}
according to their cardinality.

• Compute the generating function of permutations of {1, 2, 3} according to
their number of inversions.

• Checks the tautology ∀x ∈ P, x ∈ P for P being the set of permutations of
{1, 2, 3, 4, 5}. This is a very good test for internal coherence between the
iteration and membership functions of a given set. For a matter of fact, it
is included in Sage generic tests; see:

sage: P = Partitions(5)
sage: P._test_enumerated_set_contains??

The tautology ∀x /∈ P, x /∈ P would be most useful to complete the mem-
bership test. However, we would need to specify the considered universe;
and moreover, we would need an iterator on the complement of P in this
universe, which is not a usual operation.

• Print all 2× 2 invertible matrices over Z/2Z.

• Print all integer partitions of 3.

• Print all integer partitions (does not terminate!).

• Print all prime numbers (does not terminate!).

• Search for a prime number such that the associated Mersenne number is
not prime.
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• Iterates over all prime numbers whose associated Mersenne number is not
prime.

Exercise 61 page 349. Let us define recursively our iterator:

sage: def C(n):
....: if n == 1:
....: yield BinaryTree()
....: elif n > 1:
....: for k in range(1,n):
....: for t1 in C(k):
....: for t2 in C(n-k):
....: yield BinaryTree([t1,t2])

Here are the small trees:

sage: list(C(1))
[.]
sage: list(C(2))
[[., .]]
sage: list(C(3))
[[., [., .]],
[[., .], .]]

sage: list(C(4))
[[., [., [., .]]],
[., [[., .], .]],
[[., .], [., .]],
[[., [., .]], .],
[[[., .], .], .]]

We indeed find Catalan’s sequence:

sage: [len(list(C(n))) for n in range(9)]
[0, 1, 1, 2, 5, 14, 42, 132, 429]

A.16 Graph Theory
Exercise 62 page 365. (Circulant graphs) Two loops should suffice!

sage: def circulant(n,d):
....: g = Graph(n)
....: for u in range(n):
....: for c in range(d):
....: g.add_edge(u,(u+c)%n)
....: return g

Exercise 63 page 367. (Kneser Graphs) The simplest method uses Sage’s
Subsets object. We then enumerate all pairs of vertices to find the adjacencies,
albeit with many redundant calculations.
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sage: def kneser(n,k):
....: g = Graph()
....: g.add_vertices(Subsets(n,k))
....: for u in g:
....: for v in g:
....: if not u & v:
....: g.add_edge(u,v)
....: return g

However, it is possible to save time by directly enumerating the adjacent
vertices.

sage: def kneser(n,k):
....: g = Graph()
....: sommets = Set(range(n))
....: g.add_vertices(Subsets(sommets,k))
....: for u in g:
....: for v in Subsets(sommets - u,k):
....: g.add_edge(u,v)
....: return g

Exercise 64 page 381. (Optimal order for greedy colouring) The coloring
method returns a colouring as a list of lists: the list of vertices with colour 0, the
list of vertices with colour 1, etc. In order to obtain an optimal ordering of the
vertices for greedy colouring, then, it suffices to list the vertices of colour 0 (their
order does not matter), following by those of colour 1, and so on! Thus, for the
Petersen graph, we obtain:

sage: g = graphs.PetersenGraph()
sage: def optimal_order(g):
....: order = []
....: for colour_class in g.coloring():
....: for v in colour_class:
....: order.append(v)
....: return order
sage: optimal_order(g)
[1, 3, 5, 9, 0, 2, 6, 4, 7, 8]

A.17 Linear Programming
Exercise 65 page 394. (Subset Sum) To each element of the set, we associate
a binary variable indicating if the element is included or not in the set of sum
zero, as well as two constraints:

• The sum of the elements in the set must be zero.

• The set should not be empty.

This can be coded as follows:
sage: l = [28, 10, -89, 69, 42, -37, 76, 78, -40, 92, -93, 45]
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sage: p = MixedIntegerLinearProgram()
sage: b = p.new_variable(binary = True)
sage: p.add_constraint(p.sum([ v*b[v] for v in l ]) == 0)
sage: p.add_constraint(p.sum([ b[v] for v in l ]) >= 1)
sage: p.solve()
0.0
sage: b = p.get_values(b)
sage: [v for v in b if b[v] == 1]
[-93, 10, 45, 78, -40]

Let us note that it has not been necessary to define an objective function.
Exercise 66 page 395. (Dominant set) The constraints of this linear program
over the integers correspond to a covering problem: a set S of vertices of a graph
is a dominant set if and only if, for any vertex v of the graph we have that(
{v} ∪NG(v)

)
∩ S 6= ∅, where NG(v) denotes the set of neighbours of v in G. We

can write the following code:

sage: g = graphs.PetersenGraph()
sage: p = MixedIntegerLinearProgram(maximization = False)
sage: b = p.new_variable(binary = True)
sage: for v in g:
....: p.add_constraint( p.sum([b[u] for u in g.neighbors(v)])
....: + b[v] >= 1)
sage: p.set_objective( p.sum([ b[v] for v in g ]) )
sage: p.solve()
3.0
sage: b = p.get_values(b)
sage: [v for v in b if b[v] == 1]
[0, 2, 6]
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**, 43
+, 43, 58, 71, 160, 368
.., 46
;, 41
=, 43
==, 17, 44
?, 11, 43
#, 41
_, 12
\, 42, 168
~, 160

AA, 103, 140, 275
abs, 9, 96, 105
absolute value, 9
acceleration of convergence, 276
__add__, 96
add, 63
add_constraint, 391
add_edge, 363
add_edges, 363, 386
add_vertex, 363
adjacency matrix, 157, 364
adjacency table, 364
algebraic geometry, 201
algebraic number, 38, 108, 111, 132, 137,

140, 144, 185
algebraic structure, 99–101
algebraic variety, 187
AlgebraicField, 103
AlgebraicRealField, 103
algorithm

Dijkstra’s, 374
Edmonds’, 375
fast multiplication, 153
Ford-Fulkerson, 375
QR, 293

aliasing, 69
aliquot sequence, 124
all, 63, 345, 446, 447
AlternatingSignMatrices, 343
and, 106
animate, 76
animation, 76
antiderivative, 30
any, 63, 345
append, 66, 67, 274
Arb, 249
arithmetic

basic, 7
elementary, 104–105
interval, see interval arithmetic
modular, 115–117
of polynomials, 134, 183

arithmetic operations, 7, 17, 97
finite fields, 117
matrices, 160
modulo n, 116
polynomials, 130, 182

arithmetic-harmonic mean, 49, 53
Arrangements, 330
assert, 42, 264
assignment, 43, 49, 69
assume, 21, 225
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attrcall, 347
augment, 156
automatic completion, 11, 98
automatic_names, 14
automorphism_group, 377
Axiom, 99, 128

backslash, 42
bar chart, 79, 90
bar graph, 79, 90
bar_chart, 79, 90
base_extend, 156, 160
base_ring, 116, 128, 156, 275
basic type, 103
basis, 156
basis (vector space), 36, 156
basis_is_groebner, 207
berlekamp_massey, 146, 426
Bézout relation, 135
BinaryTree, 349
binomial, 9, 336
binomial coefficient, 9
bisection, 266
BLAS, 298
block matrix, 158
block_diagonal_matrix, 158
block_matrix, 156, 158
bool, 17, 103
boolean, 11, 105
breadth_first_search, 374
break, 47
bug, iii

C++, 5
canonical form, see normal form, 115
canonicalize_radical, 20, 21
cardinality, 343, 445
cartesian product, 64, 100
cartesian_product, 259, 350
Cassini surface, 92
catalan, 11
Catalan constant, 11
catastrophic cancellation, 240
categories, 133
category, 101, 133
category, 101
Cauchy interpolation, 147
CBF, 253
CC, 103, 258, 275
CDF, 245, 255, 258, 275
center, 374
change of variables, 221
change_ring, 131, 156, 160, 208
character string, 58
characteristic, 116
characteristic polynomial, 37, 162, 170, 173
characteristic value, 170
characteristic_polynomial, 37, 162

charpoly, 137, 162, 172
Chinese remainder theorem, see theorem
chromatic number, 366, 367
chromatic_number, 366, 376
CIF, 140, 253, 258, 275
circle, 89, 90
class, 95, 99
class, 42
clique, 376
clique_maximum, 376
Cliquer (program), 376
closed-form expression, 186
CoCalc, 4, 5
CoCoA, 201
coefficient

matrix, 158
polynomial, 131, 181

coefficients, 131, 181
coercion, 97
collect, 19, 20, 130
collections, 274
coloring, 370, 376, 381
colour, 75, 370
column_space, 37, 412
combine, 19
combstruct, 334
command history, 12
command line, 5
command prompt, 7
comment, 41
companion matrix, 176
comparison, 44

of two expressions, 17
complement, 372
CompleteBipartiteGraph, 366
CompleteGraph, 366
complex floating-point number, 105
complex_plot, 79, 90
ComplexBallField, 253
ComplexDoubleField, 258
ComplexField, 103, 245, 255, 258
ComplexIntervalField, 253, 258
comprehension, 62, 343
computation of π, 31, 32, 34
computational domain, 101–112
computer algebra, 3

and numerical computation, 10, 263
system, 110

concatenation, 68
conchoid, 78
condition number, 279–282, 287, 288, 301
conditional, 51
conditional instruction, 51
conjugate, 132, 160
conjugate gradient, 301
connected component, 375
connected_components, 375
connectivity, 375, 376, 378, 381
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constants, 246
constants (predefined), 11
content, 134
continue, 47
contrib_ode, 216
conventions, 7
convergence, 32, 50, 242, 243, 265, 276

acceleration of, 276
conversion, 97, 100, 104, 132, 238
copy, 69, 160, 293, 373
cos, 21
count, 66
cover_ring, 137
Cox, David A., 179
Cramer’s formula, 283
cross product, 35
cross_product, 35, 410
crt, 120, 134
cryptology, 117, 191
CSV (comma-separated values), 80
cut (graph), 377, 381
Cyclic, 190
cyclic vector, 171

data sharing, 69
decimal number, 104
decimal point, 8
decomposableObjects, 334
decomposition

partial fraction, 143
square-free, 138

decomposition, 174
decorator, 55
deepcopy, 70
def, 42, 53
degree, 131, 181
del, 43, 67, 72
delayed reduction, 117
delete_edge, 364
delete_vertex, 364
denominator, 143, 335
depth_first_search, 374
deque, 274
derivative

of a polynomial, 131, 181
of an expression, 30, 33, 65
partial, 33, 181, 216

derivative, 33, 131, 181, 263
Descartes’ rule, 264
desolve, 24, 216, 229
desolve_laplace, 226, 229
desolve_rk4, 84, 90
desolve_system, 227
det, 167
determinant, 162, 167, 170
diagonalisation, 37, 162
diameter, 374
diameter of a graph, 374

Dickson lemma, 207
dict, 72, 131
dictionary, 181
diff, 30, 33, 131, 229, 407
differential equation, 82, 149, 215–228, 305,

318
Bernoulli, 217
Clairaut, 218
constant coefficient, 223
exact, 218
homogeneous, 217, 221, 222
Lagrange, 218
linear first-order, 217, 218
parametric, 223
plot, 220
Riccati, 218
separable, 217, 219, 221
systems, 226

diffusion list, 4
DiGraph, 372
dimension

of a variety, 210
of an ideal, 184, 192, 198, 210

dimension, 185, 192, 193
discrete logarithm, 123–124
discriminant, 139
discriminant of a polynomial, 25, 141
disjoint_union, 368, 369
display

graphs, 369
distance (in a graph), 374
divides, 134, 184
division, 8

by increasing powers, 135
integers, 9
of polynomials, 134, 136, 183, 204,
209

divmod, 9
documentation, 4
domain

computation domain, 22
dominating set, 376, 395
dominating_set, 376
Dormand-Prince method, 319
dot_product, 35
double exponential method, 309
double-precision, 237, 245, 278
drawing, 81

e, 11
eccentricity, 374
eccentricity, 374
echelon form, 37, 163
echelon_form, 37, 162, 165, 166, 412
echelonize, 162, 165
edge (graph), 363
edge_coloring, 376
edge_connectivity, 375
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edge_cut, 375
edge_disjoint_paths, 375
Edmonds, Jack, 394
eigenmatrix_left, 162, 176
eigenmatrix_right, 162, 176
eigenspace, 162, 170
eigenspaces_left, 162, 175
eigenspaces_right, 162, 175
eigenvalue, 37, 162, 170, 174, 227
eigenvalues, 37, 175
eigenvector, 37, 162, 174
eigenvectors_left, 162
eigenvectors_right, 37, 162
elementary function, 21
elementary_divisors, 162, 167
elementwise_product, 160
elif, 52
elimination

algebraic, 184, 192, 196, 211
elimination_ideal, 193
else, 51
endomorphism reduction, 37
envelope of a family of curves, 88, 195
equality

left/right-hand side, 24
equation, 10, 23–26

differential, see differential equation
linear, 23, 24
numerical solution, 25, 257–278
of a curve, 78, 79, 195
of a surface, 92
partial differential, see partial differ-
ential equation

polynomial, 139
solving, 24
system of equations, 24

Euler’s method, 318
euler_gamma, 11
exec, 42
exists, 346
exp, 21
expand, 18, 20
expand_sum, 21
expand_trig, 21
exponent of a float, 235–237
exponentiation

binary, 136
modular, 117, 122

exporting a figure, 371
Expression, 260
expression tree, 17
extend, 66
extension, 38

factor, 9, 20, 96, 97, 103, 138, 139, 184
factor_list, 20
factorial, 9

programming, 54

factorial, 9, 21, 104
factorisation

integer, 96, 123, 137
polynomial, 110, 120, 132, 137

False, 11, 105
fast multiplication, 153
Fermat test, 120
Fermat, Pierre de, 9
Fibonacci sequence, 54–58
FieldIdeal, 190
Fields, 101
figure export, 76
filter, 62, 67, 69, 71
finance, 80
find_root, 24, 25, 277
finite field, 103, 106, 115–118, 121

non-prime, 117
FiniteEnumeratedSet, 442
FiniteField, 103, 117
fixed point, 150
flatten, 64, 69
float, 103
floating-point number, 25, 104
floor, 9
flow, 375–377, 395
flow, 375
for, 42, 44, 62, 64, 340, 344
forget, 22
formal power series, 108, 143, 145, 147, 425
formula

Bailey-Borwein-Plouffe, 34
Sherman–Morrison, 440

Fourier series, 77
fourier_series_partial_sum, 77
Frac, 143
Frobenius normal form, 170, 173
frozenset, 399
function, 19, 216, 229
function graph, 90
function_factory, 424
functional equation, 149

Galois group, 142
galois_group, 139, 142
GAP, 5, 6, 360
Gauss-Jordan elimination, 164
Gauss-Kronrod method, 306, 308
Gauss-Legendre method, 308
Gaussian elimination, 161–163
gcd

integers, 116, 118, 119
polynomials, 134, 263

gcd, 134, 184
Gear’s method, 319
gen, 129, 192
generator, 117, 129, 271, 272

of a polynomial ring, 179
programming, 267
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vector space, 156
genericity, 97
gens, 156, 179
genus, 193, 377
genus, 193, 377
geometry, 195, 197
get_values, 391
GF, 103, 117, 121
gfun, 334
Gibbs phenomenon, 77
girth (graph), 366
GL, 157
global, 53
GMP, 258
GMRES, 301, 304
GNU MPFR, 237, 298
GNU/Linux, 4
golden_ratio, 11
Graph, 363, 364, 372, 376
graph, 90

adjoint, see line graph
bipartite, 367, 378
chordal, 374, 378
circulant, 365, 367
complete, 367
Eulerian, 378
families of graphs, 366
interval, 378
graph
k-connected, 375

Kneser, 366
perfect, 378
Petersen, 365, 366
planar, 366
random, 367, 375, 381, 383
small graphs, 365
vertex-transitive, 366, 378

graph colouring, 376, 379, 387
graph isomorphism, 377
graph minor, 377

forbidden, 366
graph of a function, 75

differential equation solution, 82, 320
graph paths

edge-disjoint, 375
vertex-disjoint, 375

graph traversal, 373, 375
Graphics, 84, 90
graphics, 15, 75–93
Gröbner basis, 189, 192, 202, 205–213

computation cost, 211
definition, 207
reduced, 210

group, 101
linear GLn, 156

GSL, 84, 312, 313, 320, 321, 441
guessing, 147

Hamiltonian cycle, 376, 397
hamiltonian_cycle, 376, 377
harmonic function, 33
harmonic number, 119, 243
hash table, 71
help, 4, 11, 98
Hermite normal form, 165, 412
hermite_form, 166
Hilbert matrix, 281, 295, 296
histogram, 79, 90
homogenize, 181, 190

i (imaginary unit), 11, 105
ideal

polynomials, 183, 184, 187
polynomials with an infinite number
of variables, 182

ideal, 136, 137, 184, 190
identifier, 42
identity_matrix, 156, 157, 292
IEEE-754 standard, 236
if, 51, 62
imag, 105
image, see graphics

of a function, 73
of a linear transformation, 168

image, 162, 168
immutability, 160, 364, 391
immutable, 70, 72
implicit_plot, 79, 90
implicit_plot3d, 92
import, 13, 42
in, 60, 71, 72
indentation, 7, 45, 46
independent set, 369, 376, 382, 386
independent_set, 369, 376, 386
index, 67
induced subgraph, 368, 383
inequality, 25, 389

polynomial system, 197
inert function, 424
infinite, 238
InfinitePolynomialRing, 181, 182
Infinity, 11, 28, 338
initial conditions, 216
inject_variables, 430
insert, 66
instance, 95
instruction block, 45
int, 103, 338
Integer, 104, 258
integer

modulo n, 106
number, 103
part, 9, 21
ring, 115–117

integer_kernel, 162, 169
IntegerListsLex, 352, 353
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IntegerModRing, 103, 106, 115, 121
IntegerRing, 103
Integers, 103, 115
IntegerVectors, 343
integral, 33
integral curve, 84, 90
integrate, 30, 33, 312
integrate_numerical, 34
integration

numerical, 34, 305–316
symbolic, 30, 33

interreduced_basis, 210
intersection, 190, 192
interval arithmetic, 258
introspection, 98
invariant factor, 166, 174
invariant subspace, 170
inverse

compositional (of a series), 143
modular, 116
power, 292

inverse_laplace, 226, 229
IPython, 5
irrelevant_ideal, 190
is_bipartite, 378
is_cartesian_transitive, 378
is_chordal, 374, 378
is_connected, 375
is_constant, 131
is_eulerian, 378
is_exact, 275
is_hamiltonian, 377
is_integral_domain, 128
is_interval, 378
is_irreducible, 137, 139
is_isomorphic, 368, 377
is_monic, 131
is_noetherian, 133
is_perfect, 378
is_prime, 121
is_pseudoprime, 121
is_regular, 366
is_ring, 133
is_squarefree, 184
is_tree, 378
is_vertex_transitive, 366, 378
is_zero, 23, 263
iter, 344
iterable, 340, 344
iterator, 45, 46, 267, 347, 374
itertools, 347

jacobi, 123
Jacobi symbol, 123
jacobian_ideal, 190
Jmol, 91
Jordan

block, 176

form, 37, 169, 176
matrix, 176

jordan_block, 156, 157, 162, 177
jordan_form, 37, 38, 177
Jupyter, 4, 5, 14

Kash, 98
kernel, 36, 37, 162, 168
kernel, 162, 169
keyboard shortcut, 7
keys, 73, 350
knapsack (problem), 393
knot, 93
Krylov sequence, 170

label (graph), 364, 369
lagrange_polynomial, 134, 274, 307
lambda, 42, 61, 67
Lapack, 294, 298
laplace, 229
Laplace transform, 225
LATEX, 76
LattE, 353
LaurentSeriesRing, 143
lazy computation, 150
LazyPowerSeriesRing, 150, 332
lc, 181
lcm, 119, 134, 184
leading coefficient, 181, 182, 203
leading monomial, 181, 182, 203
leading term, 181, 182, 203
leading_coefficient, 131
left_kernel, 36, 37, 162, 169
left_solve, 24
Legendre polynomial, 35, 308
Leibniz formula, 65
len, 59, 68, 71, 338
lex_BFS, 374, 378
lexicographic order, 65, 203
lhs, 24, 223, 229
lift, 116, 136, 137, 189, 190
lim, 28
limit, 30

numerical approximation, 49
limit, 28, 30, 407
limit point, 229
line, 81, 84, 90
line graph, 373
line3d, 93
linear algebra, 35–39, 155–178

numerical, 279–304
linear equation, 168
linear programming, 375, 376, 389–401

over the integers, 390
linear system, 168

solving, 162, 168
linearisation (trigonometrics), 21
Linux, 4
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list, 59
list, 131
Little, John B., 179
lm, 181
log, 21, 124, 246
logic, 105
logistic map, 228
loop

while, 45
early abort, 47
for (enumeration), 44
infinite, 65

lt, 181

Macaulay2, 201
Machin’s formula, 31
Machin, John, 31
MacOS, 4
Magma, 98, 99, 128
Magnus effect, 87
manual, 4
map, 61, 64, 69, 71
map_coefficients, 181
Maple, 13, 14, 128, 334
Masser-Gramain constant, 124
matching, 375, 376, 394
matching, 386
matrix, 36, 37, 107, 155, 178, 279–304, 389

column, 158
companion, 171
decomposition, see matrix factorisa-
tion

equivalence, 161, 164, 169
factorisation

Cholesky, 285, 286, 290
LU, 165, 283, 285, 286, 293
QR, 286–288, 293, 294

inverse, 160
norm, 280, 287–289
normal form, 161, 164–166, 173
rank, 286–288
row, 158
similarity, see similarity (matrix)
transpose, 160
unimodular, 165

matrix, 36, 37, 107, 137, 157
matrix_block, 37
MatrixGroup, 156, 157
MatrixSpace, 103, 107, 155, 156
max_cut, 377
max_symbolic, 315
Maxima, 6, 13, 14, 128, 221, 262, 313, 321
maxspin, 162, 172
Mendès France, Michel, 82
method

bisection, 266
Brent’s, 277
false position, 269

Newton’s, 270
Newton-Cotes, 307
programming, 96
secant, 272
separation of variables, 224
Steffensen’s, 276

Microsoft Windows, 4
minimal polynomial, 37

algebraic number, 186
linear recurrence, 136
matrix, 38, 162, 171
vector, 171

minimal_polynomial, 37, 162
minor, 162
minor, 377
minpoly, 137, 162
MixedIntegerLinearProgram, 390, 391
mod, 116, 137, 183, 190
modulus (complex number), 9, 105
monomial order, 180, 182, 183, 203

change of order, 212
MPFI, 249
MPFR, see GNU MPFR
MPolynomial, 181
mq, 191
__mul__, 96
Muller, David E., 273
Muller, Jean-Michel, 242
multicommodity_flow, 377
multiplicity, 188, 257, 262
MuPAD, 99, 128
MuPAD-Combinat, 334
mutability, see immutability

n, see numerical_approx
n-tuple, see tuple
NaN (Not a Number), 238
new_variable, 392, 395
next, 344
next_prime, 120
None, 42, 53
norm

of a matrix, see matrix norm
of a vector, 35

norm, 35
normal equations, 287, 288
normal form

expression, 20, 22, 101, 112, 128
modulo an ideal, 189

normal_basis, 193, 202
not, 106
notebook, 7
NotImplementedError, 132
nth_root, 21
Nullstellensatz, 190
number

Carmichael, 122
floating-point, 235
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integer modular, 115–117
prime, 120–121

number field, 38, 111, 137
number_field, 137
NumberField, 38, 108, 137
numer, 96
numerator, 143
numerical approximation, 8, 47, 125, 140,

246, 279
differential equation, 318–323
equation solving, 257
integral, 305–316
limits, 32
solutions of equations, 25–26, 140,
200, 241, 278

numerical sequence, 49
uniformly distributed, 81

numerical_approx, 8, 11, 22, 105
NumPy, 86, 275, 298

object, 95
object-oriented programming, 95–98
objective function, 391
ode_contrib, 218
ode_solver, 84, 319
odeint, 84, 90, 417
one, 156
oo, 11
optimisation, 389–401
or, 106
order

additive, 116
multiplicative, 116

order, 363
order of variables, 180
OrderedSetPartitions, 343
osculating circle, 90
O’Shea, Donal, 179

p-adic number, 139
Padé approximant, 145
pairing, 386
PALP, 353
parametric curve, 78, 88, 90, 195

in 3D, 93
parametric surface, 91
parametric_plot, 78, 90
parametrisation, 88, 195
parent, 99, 101, 129, 133
parent, 116
PARI/GP, 5, 6, 98, 275, 311, 314, 315
partial differential equation, 216
partial fraction decomposition, 19, 226
partial_fraction, 19, 20, 226
partial_fraction_decomposition, 143
pass, 42
periphery, 374
Permutations, 380

π (Archimedes’ constant), 11
computation, see computation of π

piecewise, 77
pivot_rows, 162, 167
pivots, 162, 167
plot, 15, 30, 75, 90, 220, 259, 306, 372
plot (differential equation), 220
plot3d, 15, 91
plot_histogram, 79, 90
plot_points, 75
plot_vector_field, 86
point, 81
point cloud, 81
points, 81, 90
polar coordinates, 36, 78
polar_plot, 78, 90
polygen, 128
polygon, 90
polymorphism, 97
polynomial, 127–153, 179–213

Chebyshev, 135
polynomial, 181, 182
polynomial representation

dense, 152
recursive, 130, 181
sparse, 152

polynomial ring, 128, 179, 275
with infinite number of variables, 182

polynomial root, 257
polynomial_sequence, 191
PolynomialRing, 103, 128, 179, 181
pop, 66, 72
power, 8
power method, 291–293, 302–304
power series, 27, 30, 108

expansion, 30
PowerSeriesRing, 108, 143
prec, 148
precision

arbitrary vs fixed, 237, 255
floating-point number, 235–238, 240,
241, 243

loss of, 240
numerical computation, 200
series, 148

predator-prey model, 86
primality, see number, prime
primary normal form, 177
prime_range, 122
print, 42, 54, 58
probability, 368
procedure, 43, 52
prod, 63
product, 63

of graphs, 373, 378
programming, 41–73, 343–349

method, 43
projection, 194
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pseudo-division, 134
pseudo-primality, 120
pseudo_divrem, 134
public server, 4–6
Python

function, 43, 52
anonymous, 61

variable, 12–13
version 3, 41

q-factorial, 446
QQ, 103, 258, 275
QQbar, 103, 140, 185, 275
QUADPACK, 313
quadratic residue, 123
quadrature rule, 307
quit, 42
quo, 136, 137, 190
quo_rem, 134, 183
quotient

numerical, see arithmetic operations
polynomial ring, 188, 202
Z/nZ, 115

quotient, 190, 192

radical, 139, 190
radical of an ideal, 190
radius, 374
radius of a graph, 374
Ramanujan, Srinivasa, 32
random, 81
random walk, 81
random_element, 131, 380
random_matrix, 156, 157
randrange, 79
range, 46
range, 46, 345
rank, 162

matrix, 167, 170
profile, 162, 167

rank, 167
Rational, 95, 96
rational

number, 104
rational function, 19, 134, 142–143
rational reconstruction, 118, 125, 143, 144
rational_argument, 186
rational_reconstruct, 143, 145
rational_reconstruction, 118
RationalField, 103
raw_input, 59
RBF, 248
RDF, 132, 237, 255, 258, 275
real, 105
real_root_intervals, 139
real_roots, 139, 275, 277
RealBallField, 248
RealField, 103, 237, 255, 258

RealIntervalField, 247, 258
Reals, 237, 258
rectangle rule, 307
recurrence, 45
recurrence relation, 228–232
recurrent sequence, 47–55, 136

drawing, 82
numerical stability, 241

recurrent series, 147
recursivity, 54
reduce

list, 63
modulo, 136, 143, 189, 190

reduce_trig, 21
reduced echelon form, 164

transformation to, 164
reduction of endomorphism, 162
regular expression, 69
remove, 67
representation of polynomials

factored, 110
sparse, 181

reset, 13, 43
resolution

polynomial systems, 184
resources, 4
restore, 13
resultant, 140, 196
resultant, 139, 184, 193
return, 42, 47, 53, 267, 347
reverse, 65, 130, 131, 143
rewriting, 205
rhs, 24, 229
RIF, 140, 247, 258, 275
right_kernel, 36, 37, 162, 168, 411
right_solve, 24
root

n-th root, 9, 21
of a polynomial, 139, 240, 265

isolation, 264
root_field, 259
roots, 24, 25, 139, 198, 257, 262, 263, 277
rounding, 236, 240, 245
row_space, 37
RR, 103, 258, 275
RSA (crypto-system), 117
rsolve, 231
Runge’s phenomenon, 307
Runge-Kutta

method, 319

Sage developers, 6
Sage history, 6
sage-support, iii
sage:, 7
sagemath.org, 4
SageMathCloud, see CoCalc, 4
SageMathInc, 4
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save, 76
scalar product, 35
SciPy, 84, 85, 277, 278, 298, 300, 303, 304,

417
sequence, see tuple

numerical, 28
Syracuse, 51

series, 31, 243
alternating, 49
expansion, 150

series, 30, 108
Set, 71, 442
set, 71
set_binary, 392
set_immutable, 160
set_integer, 392
set_max, 392
set_min, 392
set_objective, 391
set_real, 392
shortest path (graph), 374
shortest_path, 374
show, 76, 91, 369, 372, 387
significand, 235–244
similarity (matrix), 169, 173, 178
similarity invariant, 170, 172, 174
simplification, 11, 21, 22, 110
simplify, 11, 20, 109
simplify_factorial, 21
simplify_full, 21
simplify_rational, 20, 21, 335
simplify_rectform, 21
simplify_trig, 20, 21, 23
sin, 21, 246
Singular, 5, 6, 181, 201
singular value decomposition, 286, 288, 289
size, 363
SL, 157
small_roots, 132
Smith normal form, 166
smith_form, 162
solve, 23, 24, 88, 184, 222, 391, 392
solve_left, 36, 37, 162, 168
solve_right, 36, 37, 162, 168
solving

linear programming, 391
linear systems, 35
numerical equations, 23–26, 257–278

sort, 65
sorted, 66
sorting, 65
split, 68
spreadsheet, 80
sqrt, 21, 22, 38
squarefree_decomposition, 139
SR, 103, 152, 260
SR.var, see var
srange, 46

SSP (subset sum problem), 394
stable (graph), see independent set
stack, 156
staircase, 205, 206
StandardTableaux, 343
Stein, William, 6
steiner_tree, 377
str, 68, 103
study of a function, 21
Sturm sequence, 264
subgraph, 373
subgraph_search, 368, 377, 379, 385
submatrix, 159
submatrix, 156
SubMultiset, 429
subs, 18, 131, 181, 183
subset sum, 394
Subsets, 429, 448
substitute, 18
substitute_function, 424
sum, 27, 30, 63, 345
summation

compensated, 244
programming, 48
symbolic, 27, 30

SVD, see singular value decomposition
swap_columns, 162
swap_rows, 162
sxrange, 46
symbolic expression, 10–14, 17, 105, 108–

109, 112, 128, 152
function, 19
test of zero, 22

symbolic function, 19, 229, 405
symbolic variable, 13–14
SymPy, 231
system of equations, 35, 179, 389

differential, 226

tabulation, 11
Tachyon, 91
tangent (to a curve), 270
taylor, 30, 145, 405
Taylor expansion, 30, 108
Tenenbaum, Gérald, 82
test of zero, 22
test_poly, 180
text, 90
theorem

Borsuk-Ulam, 367
Cayley-Hamilton, 173
Chinese remainder, 119
theorem

fundamental (of algebra), 259
Kuratowski’s, 366
Menger’s, 375
Pocklington’s, 121
Schwarz’, 33
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three.js, 91
timeit, 117
TimeSeries, 80
trac.sagemath.org, iii
trace, 280, 289
trace, 137
transformation matrix, 166
transformed_basis, 187, 212
transpose, 160, 285, 287, 290
transposition matrix, 161
transvection, 161, 162
trapezoidal rule, 309
traveling salesman problem, 376, 397
traveling_salesman_problem, 377
tree, 367, 378

Steiner, 377
tree, 367
triangular decomposition

of an ideal, 199
triangular form, 37, 163
triangular_decomposition, 187, 193, 199
trig_expand, 406
trig_simplify, 406
trigonometric function, 9, 21, 246
trigonometry, 211
True, 11, 105
truncate, 30
truncation of a series, 143
try, 42, 81
tuple, 70

ulp, 239
ulp (unit in the last place), 239
uniform distribution, 81
union (of graphs), 368

valuation, 134
values, 73
Vandermonde determinant, 110
var, 13, 229

variable
dependent, 216
independent, 216
Python, 43, 53
symbolic, 21

variable_name, 131
variable_names_recursive, 181
variables, 131, 229
variation of a function, 21
variety, 185, 193, 198
vector, 35

construction, 157
vector, 35, 157
vector space, 37
vector_space_dimension, 193
VectorSpace, 155
Verhulst equation, 223
vertex (graph), 363
vertex_connectivity, 375
vertex_cut, 375
vertex_disjoint_paths, 375
visualisation, 76, 369

WeightedIntegerVectors, 339
while, 42
Windows, 4
with, 42

x (symbolic variable), 13
xgcd, 134
xrange, 46, 345

yield, 42, 267, 347

Zariski closure, 192, 194
zero, 156
ζ (Riemann zeta function), 31, 51
zip, 71
ZZ, 103, 116, 258, 275
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many open-source programs, including GAP, Maxima, PARI and various
scientific libraries for Python, to which thousands of new functions are
added. Sage is freely available and is supported by all modern operating
systems.
For high school students, Sage provides a wonderful scientific and
graphical calculator. It efficiently supports undergraduate students
in their computations in analysis, linear algebra, calculus, etc. For
graduate students, researchers and engineers, Sage provides the most
recent algorithms and tools for many domains of mathematics. This is
why several universities all around the world already use Sage at the
undergraduate level, including for student internships.
This book, written by researchers and teachers at different levels
(high school, undergraduate, graduate) focuses on the underlying
mathematics, which is necessary to efficiently use Sage. In such a
way, it is more a mathematical book illustrated by concrete examples
with Sage than a reference manual.
The first part of the book is accessible to high school and undergraduate
students. The content of the other parts is more suited for graduate
students, teachers and researchers.
This book is available under a Creative Commons license. It can be
freely downloaded from

http://sagebook.gforge.inria.fr/
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